版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省岳陽市2025屆高二上數(shù)學期末質(zhì)量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正三棱柱中,若,則C到直線的距離為()A. B.C. D.2.設為等差數(shù)列的前項和,若,則的值為()A.14 B.28C.36 D.483.已知函數(shù),的導函數(shù),的圖象如圖所示,則的極值情況為()A.2個極大值,1個極小值 B.1個極大值,1個極小值C.1個極大值,2個極小值 D.1個極大值,無極小值4.設拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線5.在空間四邊形中,,,,且,則()A. B.C. D.6.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.37.已知數(shù)列滿足,且,為其前n項的和,則()A. B.C. D.8.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設是周期為2的奇函數(shù),當時,,則()A. B.C. D.10.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.11.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.12.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.16二、填空題:本題共4小題,每小題5分,共20分。13.設,則動點P的軌跡方程為________14.一支車隊有10輛車,某天下午依次出發(fā)執(zhí)行運輸任務.第一輛車于14時出發(fā),以后每間隔10分鐘發(fā)出一輛車.假設所有的司機都連續(xù)開車,并都在18時停下來休息.截止到18時,最后一輛車行駛了____小時,如果每輛車行駛的速度都是60km/h,這個車隊各輛車行駛路程之和為______千米15.已知定點,點在直線上運動,則,兩點的最短距離為________16.已知線段AB的長度為3,其兩個端點A,B分別在x軸、y軸上滑動,點M滿足.則點M的軌跡方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求的極值;(2)若有兩個零點,求實數(shù)a取值范圍.18.(12分)已知圓(1)求圓心的坐標和圓的面積;(2)若直線與圓相交于兩點,求弦長19.(12分)已知數(shù)列的前n項和,遞增等比數(shù)列滿足,且.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和為.20.(12分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設為拋物線的焦點,直線與拋物線交于,兩點,求的面積21.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;22.(10分)已知拋物線上一點到焦點的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點,且滿足(為坐標原點),證明:直線與軸的交點為定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】取AC的中點O,建立如圖所示的空間直角坐標系,根據(jù)點到線距離的向量求法和投影的定義計算即可.【詳解】由題意知,,取AC的中點O,則,建立如圖所示的空間直角坐標系,則,所以,所以在上的投影的長度為,故點C到直線距離為:.故選:D2、D【解析】利用等差數(shù)列的前項和公式以及等差數(shù)列的性質(zhì)即可求出.【詳解】因為為等差數(shù)列的前項和,所以故選:D【點睛】本題考查了等差數(shù)列的前項和公式的計算以及等差數(shù)列性質(zhì)的應用,屬于較易題.3、B【解析】根據(jù)圖象判斷的正負,再根據(jù)極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個根即為與的交點的橫坐標,當時,,當時,,即,所以為的極大值點,為的極大值,當時,,即,所以為的極小值點,為的極小值,故選:B4、A【解析】依據(jù)題意作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:A.5、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.6、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因為數(shù)列滿足,,(且)所以,,,,因為恒成立,所以,則M的最小值是,故選:C7、B【解析】根據(jù)等比數(shù)列的前n項和公式即可求解.【詳解】由題可知是首項為2,公比為3的等比數(shù)列,則.故選:B.8、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.9、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關于原點對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值10、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內(nèi),過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當d取得最大值時,有最小值,結合圖形易知,當直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.11、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B12、A【解析】根據(jù)橢圓的定義求得正確選項.【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義可得答案.【詳解】因為,所以動點P的軌跡是焦點為A,B,實軸長為4的雙曲線的上支.因為,所以,所以動點P的軌跡方程為故答案為:.14、①.2.5####②.1950【解析】通過分析,求出最后一輛車的出發(fā)時間,從而求出最后一輛車的行駛時間,這10輛車的行駛路程可以看作等差數(shù)列,利用等差數(shù)列求和公式進行求解.【詳解】因為,所以最后一輛車出發(fā)時間為15時30分,則最后一輛車行駛時間為18-15.5=2.5小時,第一輛車行程為km,且從第二輛車開始,每輛車都比前一輛少走km,這10輛車的行駛路程可以看作首項為240,公差為-10的等差數(shù)列,則10輛車的行程路程之和為(km).故答案為:2.5,195015、【解析】線段最短,就是說的距離最小,此時直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點即可【詳解】定點,點在直線上運動,當線段最短時,就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標是,所以,故答案為:16、【解析】設出動點,根據(jù)已知條件得到關于的方程.【詳解】設,由,有,得,所以,由得:,所以點的軌跡的方程是.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極小值為,無極大值(2)【解析】(1)利用導數(shù)求出,分別令、,進而得到函數(shù)的單調(diào)區(qū)間,即可求出極值;(2)利用導數(shù)討論、0時函數(shù)的單調(diào)性,進而得出函數(shù)的最小值小于0,解不等式即可.【小問1詳解】函數(shù)的定義域為,時,.令,解得,∵在上,,在上,,∴在上單調(diào)遞減,在上單調(diào)遞增,∴的極小值為,無極大值.【小問2詳解】,當時,,∴在上單調(diào)遞增,此時不可能有2個零點.當0時.令,得,∵在上,,在上,),∴在上單調(diào)遞減,在上單調(diào)遞增,∴的最小值為.∵有兩個零點,∴,即,∴.經(jīng)驗證,若,則,且,又,∴有兩個零點.綜上,a的取值范圍是.18、(1)圓心,面積為;(2).【解析】(1)將圓化為標準方程,進而求出圓心、半徑和圓的面積;(2)求出圓心到直線的距離,進而通過勾股定理求得答案.【小問1詳解】由已知,得:,所以圓心,半徑為,面積為.【小問2詳解】圓心到直線距離為,則.19、(1),(2)【解析】(1)先求,再由求出,設等比數(shù)列的公比為q,由條件可得,解出結合條件可得答案.(2)由(1)可得,利用錯位相減法可求【小問1詳解】,當時,,也滿足上式,∴,則.設等比數(shù)列的公比為q,由得,解得或.因為是遞增等比數(shù)列,所以,.【小問2詳解】①①①②:∴20、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長度后可求的面積.【小問1詳解】因為,所以,故拋物線方程為:.【小問2詳解】設,且,由可得,故或,故,故,故,而到直線的距離為,故的面積為21、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點F,利用等體積法求點A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點F,因為,所以分別為的中點.記點到平面PCF為d,直線AB與平面PCE所成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 夜場家具知識培訓課件
- 鍍鋅蛋托網(wǎng)行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 中國在線視頻網(wǎng)站行業(yè)市場發(fā)展現(xiàn)狀及投資策略咨詢報告
- 三年級數(shù)學(上)計算題專項練習附答案
- 防溺水安全知識培訓課件
- 干部管理知識培訓課件
- 二零二五年度國際貿(mào)易合同價格風險管理及調(diào)整方案3篇
- 二零二五年度定向就業(yè)服務與就業(yè)創(chuàng)業(yè)指導合同6篇
- 品質(zhì)部年終總結報告
- 二零二五年度張家港市足球場地租賃合同3篇
- 2025年遼寧省大連市普通高中學業(yè)水平合格性考試模擬政治試題(一)
- 2024版戶外廣告牌安裝與維護服務合同2篇
- 云南省昆明市五華區(qū)2023-2024學年九年級上學期期末數(shù)學試卷
- 2023-2024學年浙江省杭州市上城區(qū)教科版四年級上冊期末考試科學試卷
- 《三國志》導讀學習通超星期末考試答案章節(jié)答案2024年
- 期末 (試題) -2024-2025學年外研版(三起)(2024)英語三年級上冊
- 2023年成都溫江興蓉西城市運營集團有限公司招聘筆試題庫及答案解析
- 2019-2020學年江蘇省徐州市九年級(上)期末英語試卷(解析版)
- 蘇教版八年級下《二次根式》單元測試卷(含答案)
- AAEM的應用機理
- 公務員級別工資套改辦法
評論
0/150
提交評論