版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
7.4.2超幾何分布本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第三冊(cè)》,第七章《隨機(jī)變量及其分布列》,本節(jié)課主本節(jié)課主要學(xué)習(xí)超幾何分布超幾何分布是一類應(yīng)用廣泛的概率模型,常常與二項(xiàng)分布問題綜合運(yùn)用,本節(jié)是學(xué)生已經(jīng)學(xué)習(xí)了隨機(jī)事件、等可能事件概率、互斥事件概率、條件概率和相互獨(dú)立事件概率的求法、也學(xué)習(xí)了分布列的有關(guān)內(nèi)容。它是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用。節(jié)課是從實(shí)際出發(fā),通過抽象思維,建立數(shù)學(xué)模型,進(jìn)而認(rèn)知數(shù)學(xué)理論,應(yīng)用于實(shí)際的過程。課程目標(biāo)學(xué)科素養(yǎng)A.理解超幾何分布,能夠判定隨機(jī)變量是否服從超幾何分布;B.能夠利用隨機(jī)變量服從超幾何分布的知識(shí)解決實(shí)際問題,會(huì)求服從超幾何分布的隨機(jī)變量的均值.1.數(shù)學(xué)抽象:超幾何分布的概念2.邏輯推理:超幾何分布與二項(xiàng)分布的聯(lián)系與區(qū)別3.數(shù)學(xué)運(yùn)算:超幾何分布的有關(guān)計(jì)算4.數(shù)學(xué)建模:模型化思想重點(diǎn):超幾何分布的概念及應(yīng)用難點(diǎn):超幾何分布與二項(xiàng)分布的區(qū)別與聯(lián)系多媒體教學(xué)過程教學(xué)設(shè)計(jì)意圖核心素養(yǎng)目標(biāo)探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有C1004種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有由古典概型的知識(shí),得隨機(jī)變量X的分布列為X01234P超幾何分布一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=eq\f(Ceq\o\al(\s\up1(k),\s\do1(M))Ceq\o\al(\s\up1(n-k),\s\do1(N-M)),Ceq\o\al(\s\up1(n),\s\do1(N))),k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.1.公式中個(gè)字母的含義N—總體中的個(gè)體總數(shù)M—總體中的特殊個(gè)體總數(shù)(如次品總數(shù))n—樣本容量k—樣本中的特殊個(gè)體數(shù)(如次品數(shù))2.求分布列時(shí)可以直接利用組合數(shù)的意義列式計(jì)算,不必機(jī)械記憶這個(gè)概率分布列.3.“任取n件,恰有k件次品”是一次性抽取,用組合數(shù)列式.4.各對(duì)應(yīng)的概率和必須為1.1.下列隨機(jī)事件中的隨機(jī)變量X服從超幾何分布的是()A.將一枚硬幣連拋3次,正面向上的次數(shù)XB.從7名男生與3名女生共10名學(xué)生干部中選出5名優(yōu)秀學(xué)生干部,選出女生的人數(shù)XC.某射手射擊的命中率為0.8,現(xiàn)對(duì)目標(biāo)射擊1次,記命中目標(biāo)的次數(shù)為XD.盒中有4個(gè)白球和3個(gè)黑球,每次從中摸出1個(gè)球且不放回,X是首次摸出黑球時(shí)的總次數(shù)解析:由超幾何分布的定義可知B正確.答案:B二、典例解析例1:從50名學(xué)生中隨機(jī)選出5名學(xué)生代表,求甲被選中的概率.解:設(shè)X表示選出的5名學(xué)生中含甲的人數(shù)(只能取0或1),則X服從超幾何分布,且N=50,M=1,n=5.因此,甲被選中的概率為例2.一批零件共有30個(gè),其中有3個(gè)不合格,隨機(jī)抽取10個(gè)零件進(jìn)行檢測(cè),求至少有1件不合格的概率.解:設(shè)抽取的10個(gè)零件中不合格品數(shù)為??,則??服從超幾何分布,且??=30,??=3,??=10,??的分布列為P(X=k)=
C3至少有1件不合格的概率為??(??≥1)=??(??=1)+??(??=2)+??(??=3)=另解:(??≥1)=1???(??=0)=1?C(1)當(dāng)研究的事物涉及二維離散型隨機(jī)變量(如:次品、兩類顏色等問題)時(shí)的概率分布可視為一個(gè)超幾何分布;(2)在超幾何分布中,只要知道參數(shù)N,M,n就可以根據(jù)公式求出X取不同值時(shí)的概率.探究1:服從超幾何分布的隨機(jī)變量的均值是什么?設(shè)隨機(jī)變量X服從超幾何分布,則X可以解釋為從包含M件次品的N件產(chǎn)品中,不放回地隨機(jī)抽取n件產(chǎn)品中的次品數(shù).令p=MN,則p是N件產(chǎn)品的次品率,而XE(xn)=p,即E(X)=np.超幾何分布的均值設(shè)隨機(jī)變量X服從超幾何分布,則X可以解釋為從包含M件次品的N件產(chǎn)品中,不放回地隨機(jī)抽取n件產(chǎn)品中的次品數(shù).令p=eq\f(M,N),則E(X)=__np_.例6.一袋中有100個(gè)大小相同的小球,其中有40個(gè)黃球,60個(gè)白球,從中隨機(jī)摸出20個(gè)球作為樣本.用X表示樣本中黃球的個(gè)數(shù).(1).分別就有放回和不放回摸球,求X的分布列;(2).分別就有放回和不放回摸球,用樣本中黃球的比例估計(jì)總體中黃球的比例,求誤差不超過0.1的概率.解:(1)對(duì)于有放回摸球,由題意知??~??(20,0.4),??的分布列為對(duì)于不放回摸球,由題意知??服從超幾何分布,??的分布列為(2)樣本中黃球的比例是一個(gè)隨機(jī)變量有放回摸球:P(|f20不放回摸球:P(|f20因此,在相同的誤差限制下,采用不放回摸球估計(jì)的結(jié)果更可靠些。0.050.0500.100.150.200.25兩種摸球方式下,隨機(jī)變量X服從二項(xiàng)分布和超幾何分布.這兩種分布的均值相等都等于8.但從兩種分布的概率分布圖看,超幾何分布更集中在均值附近.當(dāng)n遠(yuǎn)遠(yuǎn)小于N時(shí),每次抽取一次,對(duì)N的影響很小.此時(shí),超幾何分布可以用二項(xiàng)分布近似.二項(xiàng)分布與超幾何分布區(qū)別和聯(lián)系1.區(qū)別:一般地,超幾何分布的模型是“取次品”是不放回抽樣,而二項(xiàng)分布的模型是“獨(dú)立重復(fù)試驗(yàn)”對(duì)于抽樣,則是有放回抽樣.2.聯(lián)系:當(dāng)次品的數(shù)量充分大,且抽取的數(shù)量較小時(shí),即便是不放回抽樣,也可視其為二項(xiàng)分布.通過具體的問題情境,引發(fā)學(xué)生思考積極參與互動(dòng),說出自己見解。從而引入超幾何分布的概念,發(fā)展學(xué)生邏輯推理、數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象和數(shù)學(xué)建模的核心素養(yǎng)。通過問題分析,讓學(xué)生掌握超幾何分布的概念及其特點(diǎn)。發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。通過典例解析,在具體的問題情境中,深化對(duì)超幾何分布的理解。發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。三、達(dá)標(biāo)檢測(cè)1.一袋中裝5個(gè)球,編號(hào)為1,2,3,4,5,從袋中同時(shí)取出3個(gè),以ξ表示取出的三個(gè)球中的最小號(hào)碼,則隨機(jī)變量ξ的分布列為()解析:隨機(jī)變量ξ的可能值為1,2,3,P(ξ=1)=eq\f(Ceq\o\al(\s\up1(2),\s\do1(4)),Ceq\o\al(\s\up1(3),\s\do1(5)))=eq\f(3,5),P(ξ=2)=eq\f(Ceq\o\al(\s\up1(2),\s\do1(3)),Ceq\o\al(\s\up1(3),\s\do1(5)))=eq\f(3,10),P(ξ=3)=eq\f(Ceq\o\al(\s\up1(2),\s\do1(2)),Ceq\o\al(\s\up1(3),\s\do1(5)))=eq\f(1,10).故選C.答案:C2.已知100件產(chǎn)品中有10件次品,從中任取3件,則任意取出的3件產(chǎn)品中次品數(shù)的數(shù)學(xué)期望為________.解析:次品數(shù)服從超幾何分布,則E(X)=3×eq\f(10,100)=0.3.答案:0.33.在高二年級(jí)的聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸獎(jiǎng)游戲,在一個(gè)口袋中裝有5個(gè)紅球和10個(gè)白球,這些球除顏色外完全相同,一次從中摸出3個(gè)球,至少摸到2個(gè)紅球就中獎(jiǎng),求中獎(jiǎng)的概率.解析:由題意知,摸到紅球個(gè)數(shù)X為離散型隨機(jī)變量,X服從超幾何分布,則至少摸到2個(gè)紅球的概率為P(X≥2)=P(X=2)+P(X=3)=eq\f(Ceq\o\al(\s\up1(2),\s\do1(5))Ceq\o\al(\s\up1(1),\s\do1(10)),Ceq\o\al(\s\up1(3),\s\do1(15)))+eq\f(Ceq\o\al(\s\up1(3),\s\do1(5))Ceq\o\al(\s\up1(0),\s\do1(10)),Ceq\o\al(\s\up1(3),\s\do1(15)))=eq\f(22,91).故中獎(jiǎng)的概率為eq\f(22,91).4.在10件產(chǎn)品中有2件次品,連續(xù)抽3次,每次抽1件,求:(1)不放回抽樣時(shí),抽取次品數(shù)ξ的均值;(2)放回抽樣時(shí),抽取次品數(shù)η的均值.解析:(1)方法一P(ξ=0)=eq\f(Ceq\o\al(\s\up1(3),\s\do1(8)),Ceq\o\al(\s\up1(3),\s\do1(10)))=eq\f(7,15);P(ξ=1)=eq\f(Ceq\o\al(\s\up1(1),\s\do1(2))Ceq\o\al(\s\up1(2),\s\do1(8)),Ceq\o\al(\s\up1(3),\s\do1(10)))=eq\f(7,15);P(ξ=2)=eq\f(Ceq\o\al(\s\up1(2),\s\do1(2))Ceq\o\al(\s\up1(1),\s\do1(8)),Ceq\o\al(\s\up1(3),\s\do1(10)))=eq\f(1,15),∴隨機(jī)變量ξ的分布列為ξ012Peq\f(7,15)eq\f(7,15)eq\f(1,15)E(ξ)=0×eq\f(7,15)+1×eq\f(7,15)+2×eq\f(1,15)=eq\f(3,5).方法二由題意知P(ξ=k)=eq\f(Ceq\o\al(\s\up1(k),\s\do1(2))Ceq\o\al(\s\up1(3-k),\s\do1(8)),Ceq\o\al(\s\up1(3),\s\do1(10)))(k=0,1,2),∴隨機(jī)變量ξ服從超幾何分布,n=3,M=2,N=10,∴E(ξ)=eq\f(nM,N)=eq\f(3×2,10)=eq\f(3,5).(2)由題意,知每次取到次品的概率為eq\f(2,10)=eq\f(1,5),∴η~Beq\b\lc\(\rc\)(\a\vs4\al\co1(3,\f(1,5))),∴E(η)=3×eq\f(1,5)=eq\f(3,5).通過練習(xí)鞏固本節(jié)所學(xué)知識(shí),通過學(xué)生解決問題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。小結(jié)1.超幾何分布2.超幾何分布的均值五、課時(shí)練通過總結(jié),讓學(xué)生進(jìn)一步鞏固本節(jié)所學(xué)內(nèi)容,提高概括能力。課后通過對(duì)教學(xué)過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)性化聘用協(xié)議:2024年版權(quán)益保障版A版
- 2025版臨時(shí)合作項(xiàng)目聘用協(xié)議4篇
- 2025年度市政道路大理石鋪裝及后期養(yǎng)護(hù)管理合同4篇
- 2025年度個(gè)人快遞分揀中心租賃合同樣本4篇
- 智能家居新趨勢(shì)提升家庭生活質(zhì)量
- 教育與培訓(xùn)中的創(chuàng)新思維教學(xué)方法探討
- SSL證書的申請(qǐng)與配置(2024版)3篇
- 家庭教育中的自然教育與戶外活動(dòng)結(jié)合
- 2025年度土地承包權(quán)抵押融資承包合同模板4篇
- 2025年度瑪雅酒店客房預(yù)訂管理合同4篇
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 初一到初三英語單詞表2182個(gè)帶音標(biāo)打印版
- 2024年秋季人教版七年級(jí)上冊(cè)生物全冊(cè)教學(xué)課件(2024年秋季新版教材)
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計(jì)6800字(論文)】
- 鐵路項(xiàng)目征地拆遷工作體會(huì)課件
- 醫(yī)院死亡報(bào)告年終分析報(bào)告
- 中國教育史(第四版)全套教學(xué)課件
- 上海民辦楊浦實(shí)驗(yàn)學(xué)校初一新生分班(摸底)語文考試模擬試卷(10套試卷帶答案解析)
- 圍手術(shù)期應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論