版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省青島大附屬中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算2a2+3a2的結(jié)果是()A.5a4 B.6a2 C.6a4 D.5a22.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為A. B.C. D.3.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為倒數(shù)的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C4.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是()A.B.C.D.5.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.6.等腰三角形三邊長分別為,且是關(guān)于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或107.下列運算不正確的是A.a(chǎn)5+C.2a28.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠19.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.1010.如圖,小明從A處出發(fā)沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調(diào)整到與出發(fā)時一致,則方向的調(diào)整應(yīng)是()A.右轉(zhuǎn)80° B.左轉(zhuǎn)80° C.右轉(zhuǎn)100° D.左轉(zhuǎn)100°二、填空題(共7小題,每小題3分,滿分21分)11.如圖是利用直尺和三角板過已知直線l外一點P作直線l的平行線的方法,其理由是__________.12.圖①是一個三角形,分別連接這個三角形的中點得到圖②;再分別連接圖②中間小三角形三邊的中點,得到圖③.按上面的方法繼續(xù)下去,第n個圖形中有_____個三角形(用含字母n的代數(shù)式表示).13.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+14.我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.15.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.16.已知一組數(shù)據(jù)1,2,x,2,3,3,5,7的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是.17.若4a+3b=1,則8a+6b-3的值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:在圖1中作出圓心O;在圖2中過點B作BF∥AC.19.(5分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)20.(8分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點移動距離為x(0<x<6).(1)∠DCB=度,當(dāng)點G在四邊形ABCD的邊上時,x=;(2)在點E,F(xiàn)的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當(dāng)2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時,y有最大值?并求出y的最大值.21.(10分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應(yīng)的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).22.(10分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現(xiàn)有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.23.(12分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.24.(14分)解不等式組:.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
直接合并同類項,合并同類項時,把同類項的系數(shù)相加,所得和作為合并后的系數(shù),字母和字母的指數(shù)不變.【詳解】2a2+3a2=5a2.故選D.【點睛】本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關(guān)鍵.所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;合并同類項時,把同類項的系數(shù)相加,所得和作為合并后的系數(shù),字母和字母的指數(shù)不變.2、A【解析】
直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為:﹣=1.故選A.【點睛】本題主要考查了由實際問題抽象出分式方程,根據(jù)題意得出正確等量關(guān)系是解題的關(guān)鍵.3、A【解析】
試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應(yīng)的數(shù)為-2,B對應(yīng)的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點:1.倒數(shù)的定義;2.?dāng)?shù)軸.4、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當(dāng)0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當(dāng)2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-5、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】解:由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)與扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)與扇形面積的計算.6、B【解析】
由題意可知,等腰三角形有兩種情況:當(dāng)a,b為腰時,a=b,由一元二次方程根與系數(shù)的關(guān)系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當(dāng)2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B7、B【解析】(-2a8、D【解析】試題解析:由題意可知:x-1≠0,
x≠1
故選D.9、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.10、A【解析】
60°+20°=80°.由北偏西20°轉(zhuǎn)向北偏東60°,需要向右轉(zhuǎn).故選A.二、填空題(共7小題,每小題3分,滿分21分)11、同位角相等,兩直線平行.【解析】試題解析:利用三角板中兩個60°相等,可判定平行考點:平行線的判定12、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個數(shù),可以發(fā)現(xiàn):第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去如圖中三角形的個數(shù)為按照這個規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個數(shù),圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;可以發(fā)現(xiàn),第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去1.按照這個規(guī)律,如果設(shè)圖形的個數(shù)為n,那么其中三角形的個數(shù)為.故答案為.【點睛】此題主要考查學(xué)生對圖形變化類這個知識點的理解和掌握,解答此類題目的關(guān)鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認真思考,歸納總結(jié)出規(guī)律,此類題目難度一般偏大,屬于難題.13、A【解析】
根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征由A點坐標(biāo)為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標(biāo)可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標(biāo)為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關(guān)于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標(biāo)為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標(biāo)特征、等腰直角三角形的性質(zhì)和軸對稱的性質(zhì)及會用求根公式法解一元二次方程.14、1【解析】分析:類比于現(xiàn)在我們的十進制“滿十進一”,可以表示滿六進一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點睛:本題是以古代“結(jié)繩計數(shù)”為背景,按滿六進一計數(shù),運用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識,另一方面也考查了學(xué)生的思維能力.15、【解析】
解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,得出A′點位置是解題關(guān)鍵.16、2.1【解析】試題分析:∵數(shù)據(jù)1,2,x,2,3,3,1,7的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)的中位數(shù)是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數(shù);2、中位數(shù)17、-1【解析】
先求出8a+6b的值,然后整體代入進行計算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點睛】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、見解析.【解析】
(1)畫出⊙O的兩條直徑,交點即為圓心O.(2)作直線AO交⊙O于F,直線BF即為所求.【詳解】解:作圖如下:(1);(2).【點睛】本題考查作圖?復(fù)雜作圖,圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.19、不需要改道行駛【解析】
解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應(yīng)用三角函數(shù)求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.20、(1)30;2;(2)x=1;(3)當(dāng)x=時,y最大=;【解析】
(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時,點G在AD上,此時x=2;(2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;
(3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時,如圖2中,點E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當(dāng)?shù)冗吶切巍鱁GF的高等于時,點G在AD上,此時x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當(dāng)2<x<3,如圖2點E、點F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當(dāng)時,最大當(dāng)3≤x<6時,如圖3,點E在線段BC上,點F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當(dāng)x<6時,y隨x的增大而減小∴當(dāng)x=3時,最大綜上所述:當(dāng)時,最大【點睛】屬于四邊形的綜合題,考查動點問題,等邊三角形的性質(zhì),三角函數(shù),二次函數(shù)的最值等,綜合性比較強,難度較大.21、(1)是;(2)見解析;(3)150°.【解析】
(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【詳解】解:(1)一個內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年建筑工程公司與施工方分包合同
- 2024年慶典花卉租賃合同
- 2024年度環(huán)保設(shè)備生產(chǎn)與安裝合同
- 2024年企業(yè)間關(guān)于虛擬現(xiàn)實技術(shù)研發(fā)合同
- 2024年度BIM模型能耗分析與優(yōu)化服務(wù)合同
- 2024國有林業(yè)企業(yè)與農(nóng)村集體組織土地承包合同
- 2024年家庭遺產(chǎn)分配協(xié)議
- 2024年度金融科技合作協(xié)議
- 2024酒店布草采購合同
- 2024年度離婚財產(chǎn)分配合同:涉及三個未成年子女的撫養(yǎng)權(quán)
- 《三黑和土地》ppt一
- 工商企業(yè)管理專業(yè)案例分析報告
- 風(fēng)疹病毒實驗活動風(fēng)險評估報告
- AI人工智能(PPT頁)(共37張PPT)
- 中外美術(shù)史年表
- 裝修改造工程施工勞動力計劃及機械設(shè)備配置
- 二年級上冊道德與法治10《我們不亂扔》說課稿二篇
- 小學(xué)蘇教版六年級上冊數(shù)學(xué)《分數(shù)四則混合運算》市級公開課課件
- 蘇州某校蘇教版六年級數(shù)學(xué)上冊第四單元《解決問題的策略》教材分析及全部教案(共含3課時)
- 國家開放大學(xué)電大本科《社會統(tǒng)計學(xué)》2023期末試題及答案(試卷代號:1318)
- 《小鯉魚跳龍門》教學(xué)設(shè)計3篇
評論
0/150
提交評論