版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省石屏縣一中2025屆高二上數(shù)學(xué)期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點(diǎn) D.2為函數(shù)的極大值點(diǎn)2.有一機(jī)器人的運(yùn)動(dòng)方程為,(是時(shí)間,是位移),則該機(jī)器人在時(shí)刻時(shí)的瞬時(shí)速度為()A. B.C. D.3.()A.-2 B.0C.2 D.34.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-35.已知實(shí)數(shù)滿足,則的取值范圍()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-16.在數(shù)列中,,,,則()A.2 B.C. D.17.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.8.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且傾斜角為銳角的直線與交于、兩點(diǎn),過(guò)線段的中點(diǎn)且垂直于的直線與的準(zhǔn)線交于點(diǎn),若,則的斜率為()A. B.C. D.9.已知拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.910.在等差數(shù)列中,為數(shù)列的前項(xiàng)和,,,則數(shù)列的公差為()A. B.C.4 D.11.已知點(diǎn)是雙曲線的左焦點(diǎn),定點(diǎn),是雙曲線右支上動(dòng)點(diǎn),則的最小值為().A.7 B.8C.9 D.1012.如圖所示,某空間幾何體的三視圖是3個(gè)全等的等腰直角三角形,且直角邊長(zhǎng)為2,則該空間幾何體的體積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正方體中,、分別是、的中點(diǎn),則異面直線與所成角的大小是____________.14.用數(shù)學(xué)歸納法證明等式:,驗(yàn)證時(shí),等式左邊________15.曲線在處的切線方程為______.16.如圖,在長(zhǎng)方體ABCD﹣A'B'C'D'中,點(diǎn)P,Q分別是棱BC,CD上的動(dòng)點(diǎn),BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線C:()的焦點(diǎn)為F,原點(diǎn)O關(guān)于點(diǎn)F的對(duì)稱點(diǎn)為Q,點(diǎn)關(guān)于點(diǎn)Q的對(duì)稱點(diǎn),也在拋物線C上(1)求p的值;(2)設(shè)直線l交拋物線C于不同兩點(diǎn)A、B,直線、與拋物線C的另一個(gè)交點(diǎn)分別為M、N,,,且,求直線l的橫截距的最大值.18.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實(shí)數(shù)a的取值范圍(2)若是方程的兩個(gè)不相等的實(shí)數(shù)根,證明:19.(12分)已知關(guān)于的不等式的解集為.(1)求的值;(2)若,求的最小值,并求此時(shí)的值.20.(12分)已知拋物線的焦點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),其中點(diǎn)A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長(zhǎng)度的最小值21.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點(diǎn)在線段(不含端點(diǎn))上運(yùn)動(dòng),設(shè)直線與平面所成角為,求的取值范圍.22.(10分)已知數(shù)列的首項(xiàng)為,且滿足.(1)求證:數(shù)列為等比數(shù)列;(2)設(shè),記數(shù)列的前項(xiàng)和為,求,并證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對(duì)于A,在區(qū)間,,故A不正確;對(duì)于B,在區(qū)間,,故B不正確;對(duì)于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點(diǎn),故C不正確,D正確.故選:D2、B【解析】對(duì)運(yùn)動(dòng)方程求導(dǎo),根據(jù)導(dǎo)數(shù)意義即速度求得在時(shí)的導(dǎo)數(shù)值即可.【詳解】由題知,,當(dāng)時(shí),,即速度為7.故選:B3、C【解析】根據(jù)定積分公式直接計(jì)算即可求得結(jié)果【詳解】由故選:C4、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因?yàn)?,,且q為整數(shù),所以,,即q=2.所以.故選:A5、C【解析】把看成動(dòng)點(diǎn)與所確定的直線的斜率,動(dòng)點(diǎn)在所給曲線上.【詳解】就是點(diǎn),所確定的直線的斜率,而在上,因?yàn)椋?故選:C6、A【解析】根據(jù)題中條件,逐項(xiàng)計(jì)算,即可得出結(jié)果.【詳解】因?yàn)?,,,所以,因?故選:A.7、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C8、C【解析】設(shè)直線的方程為,其中,設(shè)點(diǎn)、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點(diǎn)為,設(shè)直線的方程為,其中,設(shè)點(diǎn)、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因?yàn)?,則,因?yàn)?,解得,因此,直線的斜率為.故選:C.9、A【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.10、A【解析】由已知條件列方程組求解即可【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,解得,故選:A11、C【解析】設(shè)雙曲線的右焦點(diǎn)為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點(diǎn)共線時(shí)取得最小值即可得解.【詳解】∵是雙曲線的左焦點(diǎn),∴,,,,設(shè)雙曲線的右焦點(diǎn)為M,則,由雙曲線的定義可得,則,所以,當(dāng)且僅當(dāng)A、P、M三點(diǎn)共線時(shí),等號(hào)成立,因此,的最小值為9.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長(zhǎng)度和、差的最值,都可以通過(guò)相應(yīng)的圓錐曲線的定義分析問(wèn)題;(2)圓外一點(diǎn)到圓上的點(diǎn)的距離的最值,可通過(guò)連接圓外的點(diǎn)與圓心來(lái)分析求解.12、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長(zhǎng)為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別以所在直線為軸,建立空間直角坐標(biāo)系,設(shè),則,,即異面直線A1M與DN所成角的大小是考點(diǎn):異面直線所成的角14、【解析】根據(jù)數(shù)學(xué)歸納法的步驟即可解答.【詳解】用數(shù)學(xué)歸納法證明等式:,驗(yàn)證時(shí),等式左邊=.故答案為:.15、【解析】先求出函數(shù)的導(dǎo)函數(shù),然后結(jié)合導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當(dāng)時(shí),,所以切線方程為:,故答案為:.【點(diǎn)睛】本題考查了曲線在某點(diǎn)處的切線方程的求法,屬基礎(chǔ)題.16、8【解析】設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長(zhǎng)方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:8三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標(biāo),根據(jù)對(duì)稱關(guān)系求出的坐標(biāo),帶入即可求出.(2)設(shè)直線l的方程為,帶入拋物線方程利用韋達(dá)定理,計(jì)算出直線l的橫截距的表達(dá)式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設(shè)直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設(shè)方程兩根為,,則,,(*)由得,∴,,又點(diǎn)M在拋物線C上,∴,化簡(jiǎn)得,由題知M,A為不同兩點(diǎn),故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時(shí)取得最大值,即直線l的最大橫截距為.18、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,參變分離后,轉(zhuǎn)化為求函數(shù)的最值,即可求得實(shí)數(shù)的取值范圍;(2)將方程的實(shí)數(shù)根代入方程,再變形得到,利用分析法,轉(zhuǎn)化為證明,通過(guò)換元,構(gòu)造函數(shù),轉(zhuǎn)化為利用導(dǎo)數(shù)證明,恒成立.【小問(wèn)1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設(shè),,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問(wèn)2詳解】若是方程兩個(gè)不相等的實(shí)數(shù)根,即又2個(gè)不同實(shí)數(shù)根,且,,得,即,所以,不妨設(shè),則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當(dāng)時(shí),,所以,,所以,即,即得【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導(dǎo)數(shù)中的雙變量問(wèn)題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過(guò)構(gòu)造函數(shù),結(jié)合函數(shù)的導(dǎo)數(shù),即可證明.19、(1);(2),.【解析】(1)利用根與系數(shù)的關(guān)系,得到等式和不等式,最后求出的值;(2)化簡(jiǎn)函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【小問(wèn)1詳解】由題意知:,解得【小問(wèn)2詳解】由(1)知,∴,由對(duì)勾函數(shù)單調(diào)性知在上單調(diào)遞減,∴,即當(dāng),函數(shù)的最小值為20、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物線C的方程,求出A和B的橫坐標(biāo)即可得AFBF(2)設(shè)直線l方程為,與拋物線C方程聯(lián)立,求出線段AB長(zhǎng)度求其最小值即可.【小問(wèn)1詳解】設(shè),拋物線的焦點(diǎn)為,直線l經(jīng)過(guò)點(diǎn)F且斜率,直線l的方程為,將直線l方程與拋物線消去y可得,點(diǎn)A是第一象限內(nèi)的交點(diǎn),解方程得,∴.【小問(wèn)2詳解】設(shè),由題知直線l斜率不為0,故設(shè)直線l的方程為:,代入拋物線C的方程化簡(jiǎn)得,,∵>0,∴,∴,當(dāng)且僅當(dāng)m=0時(shí)取等號(hào),∴AB長(zhǎng)度最小值為12.21、(1)證明見解析(2)【解析】(1)過(guò)作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進(jìn)而可得證;(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,利用坐標(biāo)法求線面夾角的正弦值.【小問(wèn)1詳解】證明:由已知可得四邊形是等腰梯形,過(guò)作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年水泥買賣合同(含合同變更和補(bǔ)充條款)
- 2024年度綠色建筑設(shè)計(jì)與施工合作協(xié)議書3篇
- 學(xué)困生轉(zhuǎn)化工作計(jì)劃
- 小學(xué)校本教研活動(dòng)計(jì)劃
- 電話銷售業(yè)務(wù)員工作計(jì)劃
- 勞動(dòng)合同樣板
- 公司員工自我鑒定
- 制定護(hù)士的年度工作計(jì)劃
- 政府公共關(guān)系(第二版)課件 第6章 政府的公眾對(duì)象與輿論環(huán)境
- 經(jīng)典國(guó)學(xué)教學(xué)計(jì)劃
- 2024-2030年中國(guó)硅肥行業(yè)規(guī)模分析及投資前景研究報(bào)告
- 電網(wǎng)行業(yè)工作匯報(bào)模板22
- 2024年度跨境電商平臺(tái)承包經(jīng)營(yíng)合同3篇
- 2025年上半年人民日?qǐng)?bào)社招聘應(yīng)屆高校畢業(yè)生85人筆試重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省臨沂市2023-2024學(xué)年高二上學(xué)期期末考試生物試題 含答案
- 2024-2025學(xué)年一年級(jí)數(shù)學(xué)上冊(cè)期末樂(lè)考非紙筆測(cè)試題(二 )(蘇教版2024秋)
- 辦公樓電氣改造施工方案
- 浙江省衢州市2023-2024學(xué)年高一上學(xué)期期末英語(yǔ)試題(含答案)3
- 上學(xué)期高二期末語(yǔ)文試卷(含答案)
- 超齡員工用工免責(zé)協(xié)議書
- 《雁門太守行》課件
評(píng)論
0/150
提交評(píng)論