內蒙古赤峰市、呼和浩特市2025屆高一數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
內蒙古赤峰市、呼和浩特市2025屆高一數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
內蒙古赤峰市、呼和浩特市2025屆高一數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
內蒙古赤峰市、呼和浩特市2025屆高一數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
內蒙古赤峰市、呼和浩特市2025屆高一數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古赤峰市、呼和浩特市2025屆高一數(shù)學第一學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知定義在R上偶函數(shù)fx滿足下列條件:①fx是周期為2的周期函數(shù);②當x∈0,1時,fx=A12 B.1C.-142.為了抗擊新型冠狀病毒肺炎,保障師生安全,學校決定每天對教室進行消毒工作,已知藥物釋放過程中,室內空氣中含藥量y()與時間t(h)成正比();藥物釋放完畢后,y與t的函數(shù)關系式為(a為常數(shù),),據(jù)測定,當空氣中每立方米的含藥量降低到0.5()以下時,學生方可進教室,則學校應安排工作人員至少提前()分鐘進行消毒工作A.25 B.30C.45 D.603.函數(shù)的圖象大致為A. B.C. D.4.已知集合,,若,則的子集個數(shù)為A.14 B.15C.16 D.325.函數(shù)的定義域為,值域為,則的取值范圍是()A. B.C. D.6.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.對于函數(shù)的圖象,關于直線對稱;關于點對稱;可看作是把的圖象向左平移個單位而得到;可看作是把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍而得到以上敘述正確的個數(shù)是A.1個 B.2個C.3個 D.4個8.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關于直線C.的一個零點為 D.在區(qū)間的最小值為19.如圖是函數(shù)在一個周期內的圖象,則其解析式是()A. B.C. D.10.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本大題共6小題,每小題5分,共30分。11.過正方體的頂點作直線,使與棱、、所成的角都相等,這樣的直線可以作_________條.12.已知銳角三角形的邊長分別為1,3,,則的取值范圍是__________13.已知角α∈(-,0),cosα=,則tanα=________.14.計算:=_______________.15.關于的不等式的解集是________16.已知實數(shù)x、y滿足,則的最小值為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知點A、B、C的坐標分別為、、,.(1)若,求角的值;(2)若,求的值.18.已知函數(shù),.(1)求的最小正周期和單調區(qū)間;(2)求在閉區(qū)間上的最大值和最小值19.已知函數(shù)(,且).(1)寫出函數(shù)的定義域,判斷奇偶性,并證明;(2)解不等式.20.已知,且是第________象限角.從①一,②二,③三,④四,這四個選項中選擇一個你認為恰當?shù)倪x項填在上面的橫線上,并根據(jù)你的選擇,解答以下問題:(1)求的值;(2)化簡求值:.21.已知的頂點,邊上的高所在直線的方程為,邊上中線所在的直線方程為(1)求直線的方程;(2)求點的坐標.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)函數(shù)的周期為2和函數(shù)fx是定義在R上的偶函數(shù),可知flog【詳解】因為fx是周期為2所以flog又函數(shù)fx定義在R上的偶函數(shù),所以又當x∈0,1時,fx=所以flog23故選:B.2、C【解析】計算函數(shù)解析式,取計算得到答案.【詳解】∵函數(shù)圖像過點,∴,當時,取,解得小時分鐘,所以學校應安排工作人員至少提前45分鐘進行消毒工作.故選:C.3、A【解析】利用函數(shù)為奇函數(shù)及在時函數(shù)值正負,即可得答案.【詳解】由于函數(shù)的定義域關于原點對稱,且,所以函數(shù)的奇函數(shù),排除B,C選項;又因為,故排除D選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式選擇函數(shù)的圖象,考查數(shù)形結合思想,求解時注意根據(jù)解析式發(fā)現(xiàn)函數(shù)為奇函數(shù)及特殊點函數(shù)值的正負.4、C【解析】根據(jù)集合的并集的概念得到,集合的子集個數(shù)有個,即16個故答案為C5、B【解析】觀察在上的圖象,從而得到的取值范圍.【詳解】解:觀察在上的圖象,當時,或,當時,,∴的最小值為:,的最大值為:,∴的取值范圍是故選:B【點睛】本題考查余弦函數(shù)的定義域和值域,余弦函數(shù)的圖象,考查數(shù)形結合思想,屬基礎題6、D【解析】利用三角函數(shù)圖象的平移變換及誘導公式即可求解.【詳解】將函數(shù)的圖象向右平移個單位長度得到.故選:D.7、B【解析】由判斷;由判斷;由的圖象向左平移個單位,得到的圖象判斷;由的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象判斷.【詳解】對于函數(shù)的圖象,令,求得,不是最值,故不正確;令,求得,可得的圖象關于點對稱,故正確;把的圖象向左平移個單位,得到的圖象,故不正確;把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象,故正確,故選B【點睛】本題通過對多個命題真假的判斷,綜合考查三角函數(shù)的對稱性以及三角函數(shù)的圖象的變換規(guī)律,屬于中檔題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經掌握的知識點入手,然后集中精力突破較難的命題.8、D【解析】根據(jù)余弦函數(shù)的圖象與性質判斷其周期、對稱軸、零點、最值即可.【詳解】函數(shù),周期為,故A錯誤;函數(shù)圖像的對稱軸為,,,不是對稱軸,故B錯誤;函數(shù)的零點為,,,所以不是零點,故C錯誤;時,,所以,即,所以,故D正確.故選:D9、B【解析】通過函數(shù)的圖象可得到:A=3,,,則,然后再利用點在圖象上求解.,【詳解】由函數(shù)的圖象可知:A=3,,,所以,又點在圖象上,所以,即,所以,即,因為,所以所以故選:B【點睛】本題主要考查利用三角函數(shù)的圖象求解析式,還考查了運算求解的能力,屬于中檔題.10、C【解析】化函數(shù)解析式為,再由圖象平移的概念可得【詳解】解要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位,即:故選C【點睛】本題考查函數(shù)圖象平移變換,要注意的左右平移變換只針對自變量加減,即函數(shù)的圖象向左平移個單位,得圖象的解析式為二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將小正方體擴展成4個小正方體,根據(jù)直線夾角的定義即可判斷出符合條件的條數(shù)【詳解】解:設ABCD﹣A1B1C1D1邊長為1第一條:AC1是滿足條件的直線;第二條:延長C1D1到C1且D1C2=1,AC2是滿足條件的直線;第三條:延長C1B1到C3且B1C3=1,AC3是滿足條件的直線;第四條:延長C1A1到C4且C4A1,AC4是滿足條件的直線故答案為4【點睛】本題考查滿足條件的直線條數(shù)的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,考查分類與整合思想,是基礎題12、【解析】由三角形中三邊關系及余弦定理可得應滿足,解得,∴實數(shù)的取值范圍是答案:點睛:根據(jù)三角形的形狀判斷邊滿足的條件時,需要綜合考慮邊的限制條件,在本題中要注意銳角三角形這一條件的運用,必須要考慮到三個內角的余弦值都要大于零,并由此得到不等式,進一步得到邊所要滿足的范圍13、【解析】利用同角三角函數(shù)的平方關系和商數(shù)關系,即得解【詳解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案為:14、【解析】考點:兩角和正切公式點評:本題主要考查兩角和的正切公式變形的運用,抓住和角是特殊角,是解題的關鍵.15、【解析】不等式,可變形為:,所以.即,解得或.故答案為.16、【解析】利用基本不等式可得,即求.【詳解】依題意,當且僅當,即時等號成立.所以的最小值為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)兩向量的模相等,利用兩點間的距離公式建立等式求得的值,根據(jù)的范圍求得;(2)根據(jù)向量的基本運算根據(jù),求得和的關系式,然后用同角和與差的關系可得到,再由化簡可得,進而可確定答案【詳解】(1)∵,∴化簡得,∵,∴(2)∵,∴,∴,∴,∴【點睛】本題主要考查兩角和與差的基本關系和三角與向量的綜合題18、(1)最小正周期為,單調遞增區(qū)間是,單調遞減區(qū)間是;(2)最小值為,最大值為【解析】(1)由三角函數(shù)中的恒等變換應用化簡函數(shù)解析式可得,利用正弦函數(shù)的性質即得;(2)利用正弦函數(shù)的性質即求【小問1詳解】由,∴的最小正周期為,由,得,由,得∴函數(shù)單調增區(qū)間為,函數(shù)單調減區(qū)間為;【小問2詳解】由于,所以,所以,故,故函數(shù)的最小值為,函數(shù)的最大值為19、(1),為奇函數(shù);(2)當時,解得:當時,【解析】【試題分析】(1)根據(jù)求得函數(shù)的定義域,利用判斷出函數(shù)為奇函數(shù).(2)將原不等式轉化為,對分成兩類,利用函數(shù)的單調性求得不等式的解集.試題解析】(1)由題設可得,解得,故函數(shù)定義域為從而:故為奇函數(shù).(2)由題設可得,即:當時∴為上的減函數(shù)∴,解得:當時∴為上的增函數(shù)∴,解得:【點睛】本小題主要考查函數(shù)的定義域的求法,考查函數(shù)單調性的證明,考查利用函數(shù)的單調性解不等式,還考查了分類討論的數(shù)學思想方法.函數(shù)的定義域是使得函數(shù)表達式有意義的的取值范圍,一般是分母不為零,偶次方根被開方數(shù)不為零,對數(shù)的真數(shù)大于零,還有,.20、(1)答案不唯一,具體見解析(2)【解析】(1)考慮為第三象限或第四象限角兩種情況,根據(jù)同角三角函數(shù)關系計算得到答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論