版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省遼源市第五中學(xué)高三數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.362.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.43.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大4.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.25.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.6.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.7.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.48.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.39.已知集合A,則集合()A. B. C. D.10.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.11.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.12.如圖,四邊形為平行四邊形,為中點(diǎn),為的三等分點(diǎn)(靠近)若,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.14.若關(guān)于的不等式在時恒成立,則實(shí)數(shù)的取值范圍是_____15.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.16.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.18.(12分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.19.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.20.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.21.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.22.(10分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計結(jié)果如下表所示.組別頻數(shù)(1)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案.(?。┑梅植坏陀诘目梢垣@贈次隨機(jī)話費(fèi),得分低于的可以獲贈次隨機(jī)話費(fèi);(ⅱ)每次贈送的隨機(jī)話費(fèi)和相應(yīng)的概率如下表.贈送的隨機(jī)話費(fèi)/元概率現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈的話費(fèi),求的分布列及數(shù)學(xué)期望.附:,若,則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.2、B【解析】
解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點(diǎn)睛】本題考查了不等式的解法,考查了集合的關(guān)系.3、C【解析】
,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.4、B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計算能力.5、C【解析】
由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.6、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點(diǎn)睛】本題考查向量的線性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題7、B【解析】
作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個圖象有兩個交點(diǎn):點(diǎn)A和點(diǎn)B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.8、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡單題.9、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.10、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.11、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時,截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.12、D【解析】
使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點(diǎn)睛】本題考查了平面向量的基本定理及其意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時,等號成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時,一定要數(shù)形結(jié)合,本題屬于中檔題.14、【解析】
利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進(jìn)而求得的取值范圍?!驹斀狻坑傻?,兩邊同除以,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實(shí)數(shù)的取值范圍是。【點(diǎn)睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。15、2【解析】
將已知數(shù)列分組為(1),,共個組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.16、20,21【解析】
由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時,,.當(dāng)時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】
(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因?yàn)?,故,即,?(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.18、(1)見解析(2)見解析【解析】
(1)取的中點(diǎn)D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點(diǎn),由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點(diǎn)D,連結(jié),.在中,P,D分別為,中點(diǎn),,且.在直三棱柱中,,.Q為棱的中點(diǎn),,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點(diǎn),.由(1)知,,.又,平面,平面,平面.【點(diǎn)睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.19、A【解析】
由正弦定理化簡得,解得,進(jìn)而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進(jìn)而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.20、(1),.(2)【解析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因?yàn)榕c半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點(diǎn)睛】本題考查余弦定理、直線與圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運(yùn)算求解能力,以及函數(shù)與方程的思想.21、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結(jié)合即可解決.【詳解】(1),當(dāng)時,,遞增,當(dāng)時,,遞減.故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),,,設(shè)的根為,即有可得,,當(dāng)時,,遞減,當(dāng)時,,遞增.,所以,①當(dāng);②當(dāng)時,設(shè),遞增,,所以.綜上,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)恒成立問題,這里要強(qiáng)調(diào)一點(diǎn),處理恒成立問題時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理.22、(1);(2)見解析.【解析】
(1)根據(jù)題中所給的統(tǒng)計表,利用公式計算出平均數(shù)的值,再利用數(shù)據(jù)之間的關(guān)系將、表示為,,利用題中所給數(shù)據(jù),以及正態(tài)分布的概率密度曲線的對稱性,求出對應(yīng)的概率;(2)根據(jù)題意,高于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)機(jī)信息化管理系統(tǒng)建設(shè)合同4篇
- 2025年度鋼管行業(yè)國際市場拓展合作合同
- 2025年度廚房員工勞動合同保密與競業(yè)限制合同2篇
- 2025年度國際教育項(xiàng)目合作辦學(xué)合同范本4篇
- 檢測設(shè)備智能化升級-深度研究
- 農(nóng)業(yè)大數(shù)據(jù)應(yīng)用前景分析-深度研究
- 2025年度新型冷鏈儲藏室租賃服務(wù)協(xié)議范本4篇
- 光催化CO2還原催化劑壽命評估-深度研究
- 二零二五版體育賽事贊助與冠名權(quán)合同4篇
- 2025年度地下車庫租賃與智能管理系統(tǒng)集成合同4篇
- 臺兒莊介紹課件
- 疥瘡病人的護(hù)理
- 人工智能算法與實(shí)踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實(shí)施戰(zhàn)略知識考試題庫與答案
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計與開發(fā)標(biāo)準(zhǔn)與規(guī)范
- 2024年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論