廣西桂林、梧州、貴港、玉林、崇左、北海2025屆數(shù)學高二上期末監(jiān)測試題含解析_第1頁
廣西桂林、梧州、貴港、玉林、崇左、北海2025屆數(shù)學高二上期末監(jiān)測試題含解析_第2頁
廣西桂林、梧州、貴港、玉林、崇左、北海2025屆數(shù)學高二上期末監(jiān)測試題含解析_第3頁
廣西桂林、梧州、貴港、玉林、崇左、北海2025屆數(shù)學高二上期末監(jiān)測試題含解析_第4頁
廣西桂林、梧州、貴港、玉林、崇左、北海2025屆數(shù)學高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣西桂林、梧州、貴港、玉林、崇左、北海2025屆數(shù)學高二上期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設實數(shù),滿足,則的最小值為()A.5 B.6C.7 D.82.不等式的一個必要不充分條件是()A. B.C. D.3.古希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標系中,,點P滿足,設點P的軌跡為C,下列結論正確的是()A.C的方程為B.當A,B,P三點不共線時,面積的最大值為24C.當A,B,P三點不共線時,射線是的角平分線D.在C上存在點M,使得4.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.5.下列導數(shù)運算正確的是()A. B.C. D.6.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線7.在平面直角坐標系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.8.已知,,,則,,的大小關系是A. B.C. D.9.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.10.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則11.已知點在橢圓上,與關于原點對稱,,交軸于點,為坐標原點,,則橢圓的離心率為()A. B.C. D.12.如圖,D是正方體的一個“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點,P是BC中點,Q是AD上的一個動點,連PQ,則當AC與PQ所成角為最小時,()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.14.直線l過拋物線的焦點F,與拋物線交于A,B兩點,若,則直線l的斜率為______15.已知為等比數(shù)列的前n項和,若,,則_____________.16.狄利克雷是十九世紀德國杰出的數(shù)學家,對數(shù)論、數(shù)學分析和數(shù)學物理有突出貢獻.狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由18.(12分)在中,角、、C所對的邊分別為、、,,.(1)若,求的值;(2)若的面積,求,的值.19.(12分)在平面直角坐標系中,動點到直線的距離與到點的距離之差為.(1)求動點的軌跡的方程;(2)過點的直線與交于、兩點,若的面積為,求直線的方程.20.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.21.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值22.(10分)已知數(shù)列的首項,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前n項和為,且,求n.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】作出不等式組的可行域,利用目標函數(shù)的幾何意義,利用數(shù)形結合的思想求解即可.【詳解】畫出約束條件的平面區(qū)域,如下圖所示:目標函數(shù)可以化為,函數(shù)可以看成由函數(shù)平移得到,當直線經(jīng)過點時,直線的截距最小,則,故選:2、B【解析】解不等式,由此判斷必要不充分條件.【詳解】,解得,所以不等式的一個必要不充分條件是.故選:B3、C【解析】根據(jù)題意可求出C的方程為,即可根據(jù)題意判斷各選項的真假【詳解】對A,由可得,化簡得,即,A錯誤;對B,當A,B,P三點不共線時,點到直線的最大距離為,所以面積的最大值為,B錯誤;對C,當A,B,P三點不共線時,因為,所以射線是的角平分線,C正確;對D,設,由可得點的軌跡方程為,而圓與圓的圓心距為,兩圓內(nèi)含,所以這樣的點不存在,D錯誤故選:C4、B【解析】利用余弦定理結合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.5、B【解析】利用基本初等函數(shù)的導數(shù)和復合函數(shù)的導數(shù),依次分析即得解【詳解】選項A,,錯誤;選項B,,正確;選項C,,錯誤;選項D,,錯誤故選:B6、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點睛:在直角坐標系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時要注意變量范圍.7、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負值舍去).故選:A.8、B【解析】若對數(shù)式的底相同,直接利用對數(shù)函數(shù)的性質(zhì)判斷即可,若底不同,則根據(jù)結構構造函數(shù),利用函數(shù)的單調(diào)性判斷大小【詳解】對于的大?。海?,明顯;對于的大?。簶嬙旌瘮?shù),則,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,即對于的大?。?,,,故選B【點睛】將兩兩變成結構相同的對數(shù)形式,然后利用對數(shù)函數(shù)的性質(zhì)判斷,對于結構類似的,可以通過構造函數(shù)來來比較大小,此題是一道中等難度的題目9、B【解析】設,根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設,圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B10、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.11、B【解析】由,得到,結合,得到,進而求得,得出,結合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.12、C【解析】根據(jù)題意,建立空間直角坐標系,求得AC與PQ夾角的余弦值關于點坐標的函數(shù)關系,求得角度最小時點的坐標,即可代值計算求解結果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標原點,建立空間直角坐標系如下所示:設,則,不妨設點的坐標為,則,,則,又,設直線所成角為,則,則,令,令,則,令,則,此時.故當時,取得最大值,此時最小,點,則,故,則故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】根據(jù)給定條件設出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設,,由兩式相減得:,而,于是得,即,所以.故答案為:14、【解析】如圖,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當在第一象限時,設,兩點的拋物線的準線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設,則,,,在直角三角形中,,所以,則直線的斜率;當在第四象限時,同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:15、30【解析】根據(jù)等比數(shù)列性質(zhì)得,,也成等比,即可求得結果.【詳解】由等比數(shù)列的性質(zhì)可知,,,構成首項為10,公比為1的等比數(shù)列,所以【點睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力,屬基礎題.16、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設,,則.故答案:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD,設出點M的坐標,由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標原點,直線AB,AD,AA1分別為x軸,y軸,z軸建立空間直角坐標系,因為點E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F(xiàn)所以=,=(0,1,1)設平面EFD的法向量為,則即令y=1,則z=-1,x=2所以,由題知,平面DEC的一個法向量為m=(0,0,1),所以cos<,>==所以平面EFD與平面DEC的夾角的余弦值是(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD設點M的坐標為(0,t,2)(0≤t≤2),則=(,t,2)因為平面EFD的一個法向量為,而與不平行,所以在線段A1D1上不存在點M,使得BM⊥平面EFD18、(1)(2),【解析】(1)根據(jù)同角三角函數(shù)的基本關系求解的值,再結合正弦定理求解即可;(2)根據(jù)三角形的面積可求解出邊c的值,再運用余弦定理求解邊b.【詳解】(1),且,.由正弦定理得,.(2),.由余弦定理得,.19、(1);(2)或.【解析】(1)本題首先可以設動點,然后根據(jù)題意得出,通過化簡即可得出結果;(2)本題首先可排除直線斜率不存在時情況,然后設直線方程為,通過聯(lián)立方程并化簡得出,則,,再然后根據(jù)得出,最后根據(jù)的面積為即可得出結果.【詳解】(1)設動點,因為動點到直線的距離與到點的距離之差為,所以,化簡可得,故軌跡方程為.(2)當直線斜率不存在時,其方程為,此時,與只有一個交點,不符合題意,當直線斜率存在時,設其方程為,聯(lián)立方程,化簡得,,令、,則,,因為,所以,因為的面積為,所以,解得或,故直線方程為:或.【點睛】本題考查動點的軌跡方程的求法以及拋物線與直線相交的相關問題的求解,能否根據(jù)題意列出等式是求動點的軌跡方程的關鍵,考查韋達定理的應用,在計算時要注意斜率為這種情況,考查計算能力,考查轉化與化歸思想,是中檔題.20、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,21、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標系,分別求得平面BCD的一個法向量和平面DCM的一個法向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論