山東省禹城市綜合高中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
山東省禹城市綜合高中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
山東省禹城市綜合高中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
山東省禹城市綜合高中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
山東省禹城市綜合高中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省禹城市綜合高中2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,從集合A中任取一點P,則點P滿足約束條件的概率為()A. B.C. D.2.的展開式中的系數(shù)是()A. B.C. D.3.《九章算數(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積為3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為()A.1升 B.升C.升 D.升4.拋物線準(zhǔn)線方程為()A. B.C. D.5.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條6.一質(zhì)點從出發(fā),做勻速直線運(yùn)動,每秒的速度為秒后質(zhì)點所處的位置為()A. B.C. D.7.已知橢圓的左焦點是,右焦點是,點P在橢圓上,如果線段的中點在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:38.我國古代數(shù)學(xué)典籍《四元玉鑒》中有如下一段話:“河有汛,預(yù)差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人9.從集合中任取兩個不同元素,則這兩個元素相差的概率為()A. B.C. D.10.方程表示橢圓的充分不必要條件可以是()A. B.C. D.11.設(shè)A=37+·35+·33+·3,B=·36+·34+·32+1,則A-B的值為()A.128 B.129C.47 D.012.已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)滿足,則的最小值為()A B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.我國南北朝時期的數(shù)學(xué)家祖暅提出了一個原理“冪勢既同,則積不容異”,即夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是一個半徑為2的半圓,則該幾何體的體積為________.14.設(shè)是定義在上的可導(dǎo)函數(shù),且滿足,則不等式解集為_______15.已知直線與之間的距離為,則__________16.無窮數(shù)列滿足:只要必有,則稱為“和諧遞進(jìn)數(shù)列”,已知為“和諧遞進(jìn)數(shù)列”,且前四項成等比數(shù)列,,,則__________,若數(shù)列前項和為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個幾何體的表面積;(2)設(shè)G是弧DF的中點,設(shè)P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.18.(12分)在平面直角坐標(biāo)系中,已知圓,點P在圓上,過點P作x軸的垂線,垂足為是的中點,當(dāng)P在圓M上運(yùn)動時N形成的軌跡為C(1)求C的軌跡方程;(2)若點,試問在x軸上是否存在點M,使得過點M的動直線交C于兩點時,恒有?若存在,求出點M的坐標(biāo);若不存在,請說明理由19.(12分)已知函數(shù).若圖象上的點處的切線斜率為(1)求a,b的值;(2)的極值20.(12分)已知拋物線的焦點到準(zhǔn)線的距離為,過點的直線與拋物線只有一個公共點.(1)求拋物線的方程;(2)求直線的方程.21.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值22.(10分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同兩點E,F(xiàn),點O為坐標(biāo)原點,且,當(dāng)?shù)拿娣e取最大值時,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)圓的性質(zhì),結(jié)合兩條直線的位置關(guān)系、幾何概型計算公式進(jìn)行求解即可.【詳解】,圓心坐標(biāo)為,半徑為,直線互相垂直,且交點為,由圓的性質(zhì)可知:點P滿足約束條件的概率為,故選:C2、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B3、B【解析】設(shè)出竹子自上而下各節(jié)的容積且為等差數(shù)列,根據(jù)上面4節(jié)的容積共3升,下面3節(jié)的容積共4升列出關(guān)于首項和公差的方程,聯(lián)立即可求出首項和公差,根據(jù)求出的首項和公差,利用等差數(shù)列的通項公式即可求出第5節(jié)的容積【詳解】解:設(shè)竹子自上而下各節(jié)的容積分別為:,,,,且為等差數(shù)列,根據(jù)題意得:,,即①,②,②①得:,解得,把代入①得:,則故選:B【點睛】本題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項公式化簡求值,屬于中檔題4、D【解析】由拋物線的準(zhǔn)線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準(zhǔn)線方程為故選D【點睛】本題主要考查了拋物線的準(zhǔn)線方程,屬于基礎(chǔ)題5、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設(shè)過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.6、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】2秒后質(zhì)點所處的位置為.故選:A【點睛】本題考查了空間向量的線性運(yùn)算,考查了基本知識掌握的情況以及學(xué)生的綜合素養(yǎng),屬于基礎(chǔ)題.7、A【解析】求出橢圓的焦點坐標(biāo),再根據(jù)點在橢圓上,線段的中點在軸上,求得點坐標(biāo),進(jìn)而計算,從而求解.【詳解】由橢圓方程可得:,設(shè)點坐標(biāo)為,線段的中點為,因為線段中點在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.8、B【解析】根據(jù)題意,設(shè)每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設(shè)第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B9、B【解析】一一列出所有基本事件,然后數(shù)出基本事件數(shù)和有利事件數(shù),代入古典概型的概率計算公式,即可得解.【詳解】解:從集合中任取兩個不同元素的取法有、、、、、共6種,其中滿足兩個元素相差的取法有、、共3種.故這兩個元素相差的概率為.故選:B.10、D【解析】由“方程表示橢圓”可求得實數(shù)的取值范圍,結(jié)合充分不必要條件的定義可得出結(jié)論.【詳解】若方程表示橢圓,則,解得或.故方程表示橢圓的充分不必要條件可以是.故選:D.11、A【解析】先化簡A-B,發(fā)現(xiàn)其結(jié)果為二項式展開式,然后計算即可【詳解】A-B=37-·36+·35-·34+·33-·32+·3-1=故選A.【點睛】本題主要考查了二項式定理的運(yùn)用,關(guān)鍵是通過化簡能夠發(fā)現(xiàn)其結(jié)果在形式上滿足二項式展開式,然后計算出結(jié)果,屬于基礎(chǔ)題12、B【解析】由數(shù)量積的坐標(biāo)運(yùn)算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓錐的側(cè)面展開圖是一個半徑為2的半圓,由,求得底面半徑,進(jìn)而得到高,再利用錐體的體積公式求解.【詳解】設(shè)圓錐的母線長為l,高為h,底面半徑為r,因為圓錐的側(cè)面展開圖是一個半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:14、【解析】構(gòu)造函數(shù),結(jié)合題意求得,由此判斷出在上遞增,由此求解出不等式的解集.【詳解】令,,故函數(shù)在上單調(diào)遞增,不等式可化為,則,解得:【點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、或##或【解析】利用平行直線間距離公式構(gòu)造方程求解即可.【詳解】方程可化為:,由平行直線間距離公式得:,解得:或.故答案為:或.16、①.2②.7578【解析】根據(jù)前四項成等比數(shù)列及定義可求得,根據(jù)新定義得數(shù)列是周期數(shù)列,從而易求得【詳解】∵成等比數(shù)列,,,又,為“和諧遞進(jìn)數(shù)列”,,,,,…,數(shù)列是周期數(shù)列,周期為4,故答案為:2,7578三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩形和一個圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉(zhuǎn)化為同一個平面內(nèi)的直線夾角即可【小問1詳解】上下兩個扇形的面積之和為:兩個矩形面積之和為:4側(cè)面圓弧段的面積為:故這個幾何體的表面積為:【小問2詳解】如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點,則由于上下兩個平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為18、(1);(2)不存在,理由見解析.【解析】(1)設(shè),根據(jù)中點坐標(biāo)公式用N的坐標(biāo)表示P的坐標(biāo),將P的坐標(biāo)代入圓M的方程化簡即可得N的軌跡方程;(2)假設(shè)存在,設(shè)M為(m,0),設(shè)直線l斜率為k,表示其方程,l方程和橢圓方程聯(lián)立,根據(jù)韋達(dá)定理得根與系數(shù)關(guān)系,由,得,代入根與系數(shù)的關(guān)系求k與m關(guān)系即可判斷.【小問1詳解】設(shè),因為N為的中點,,又P點在圓上,,即C軌跡方程為;【小問2詳解】不存在滿足條件的點M,理由如下:假設(shè)存在滿足條件的點M,設(shè)點M的坐標(biāo)為,直線的斜率為k,則直線的方程為,由消去y并整理,得,設(shè),則由,得,即,將代入上式并化簡,得將式代入上式,有,解得,而,求得點M在橢圓外,若與橢圓無交點不滿足條件,所以不存在這樣的點M【點睛】本題關(guān)鍵是由得,將幾何關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系進(jìn)行計算.19、(1)(2)極大值為,極小值為【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)圖象上的點處的切線斜率為,列出方程組,解之即可得解;(2)求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得解.【小問1詳解】解:,,;【小問2詳解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的極大值為,極小值為.20、(1);(2)或或.【解析】(1)根據(jù)給定條件結(jié)合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設(shè)出其方程,再與拋物線C的方程聯(lián)立,再討論計算,l斜率不存在時驗證作答.【小問1詳解】因拋物線的焦點到準(zhǔn)線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當(dāng)直線的斜率存在時,設(shè)直線為,由消去y并整理得:,當(dāng)時,,點是直線與拋物線唯一公共點,因此,,直線方程為,當(dāng)時,,此時直線與拋物線相切,直線方程為,當(dāng)直線的斜率不存在時,y軸與拋物線有唯一公共點,直線方程為,所以直線方程為為或或.21、(1)證明見解析;(2).【解析】(1)連接與交于點O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據(jù),底面,建立空間直角坐標(biāo)系,求得平面的一個法向量,再根據(jù)底面,得到平面一個法向量,然后由夾角公式求解.【小問1詳解】如圖所示:連接與交于點O,連接OE,如圖,由分別為的中點所以,又平面,平面,所以平面;【小問2詳解】由,底面,故底面建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為:,則,即,令,則,則,因為底面,所以為平面一個法向量,所以所以平面與平面CEB夾角的余弦值為.22、(1)(2)【解析】(1)設(shè)點,根據(jù)題意,得到,根據(jù)向量數(shù)量積的坐標(biāo)表示,得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論