2025屆云南省陸良縣高二上數(shù)學期末檢測試題含解析_第1頁
2025屆云南省陸良縣高二上數(shù)學期末檢測試題含解析_第2頁
2025屆云南省陸良縣高二上數(shù)學期末檢測試題含解析_第3頁
2025屆云南省陸良縣高二上數(shù)學期末檢測試題含解析_第4頁
2025屆云南省陸良縣高二上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省陸良縣高二上數(shù)學期末檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上的最小值為()A. B.C.-1 D.2.設,,,則,,大小關系是A. B.C. D.3.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.4.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.5.設函數(shù)是奇函數(shù)的導函數(shù),,當時,,則使得成立的的取值范圍是A. B.C D.6.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m7.直線被圓截得的弦長為()A.1 B.C.2 D.38.已知直線的一個方向向量,平面的一個法向量,若,則()A.1 B.C.3 D.9.已知,,,則下列判斷正確的是()A. B.C. D.10.在正四面體中,棱長為2,且E是棱AB中點,則的值為A. B.1C. D.11.定義在R上的函數(shù)與函數(shù)在上具有相同的單調性,則k的取值范圍是()A. B.C. D.12.阿波羅尼斯是古希臘著名數(shù)學家,與歐幾里得、阿基米德并稱為亞歷山大時期數(shù)學三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知動點與兩定點的距離之比,那么點的軌跡就是阿波羅尼斯圓.已知動點的軌跡是阿波羅尼斯圓,其方程為,其中,定點為軸上一點,定點的坐標為,若點,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,若,則______14.等比數(shù)列中,,,則數(shù)列的公比為____.15.已知正三角形邊長為a,則該三角形內任一點到三邊的距離之和為定值.類比上述結論,在棱長為a的正四面體內,任一點到其四個面的距離之和為定值_____.16.若,滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,點到兩點的距離之和等于4,設點的軌跡為曲線(1)求曲線的方程;(2)設直線與交于兩點,為何值時?18.(12分)求函數(shù)在區(qū)間上的最大值和最小值19.(12分)已知,,函數(shù),直線是函數(shù)圖象的一條對稱軸(1)求函數(shù)的解析式及單調遞增區(qū)間;(2)若,,的面積為,求的周長20.(12分){}是公差為1的等差數(shù)列,.正項數(shù)列{}的前n項和為,且.(1)求數(shù)列{}和數(shù)列}的通項公式;(2)在和之間插入1個數(shù),使,,成等差數(shù)列,在和之間插入2個數(shù),,使,,,成等差數(shù)列,…,在和之間插入n個數(shù),,…,,使,,,…,,成等差數(shù)列.①記,求{}的通項公式;②求的值.21.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(1)求證:平面MND⊥平面PCD;(2)求點P到平面MND的距離22.(10分)已知直線l過點A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點P,Q,且|PQ|=8,求圓C的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出函數(shù)的導函數(shù),根據(jù)導數(shù)的符號求出函數(shù)的單調區(qū)間,再根據(jù)函數(shù)的單調性即可得出答案.【詳解】解:因為,所以,當時,,單調遞減;當時,,單調遞增,故.故選:D.2、A【解析】構造函數(shù),根據(jù)的單調性可得(3),從而得到,,的大小關系【詳解】考查函數(shù),則,在上單調遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調性比較大小,考查了構造法和轉化思想,屬基礎題3、A【解析】根據(jù)題設可得關于的不等式,從而可求的取值范圍.【詳解】設公差為,因為,,所以,即,從而.故選:A.4、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以OA為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以OA為直徑的圓上,而以OA為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D5、B【解析】構造函數(shù),可知函數(shù)為奇函數(shù),利用導數(shù)分析出函數(shù)在上的單調性,并得出,然后分別在和解不等式,由此可得出不等式的解集.【詳解】構造函數(shù),該函數(shù)的定義域為,由于函數(shù)為上的奇函數(shù),則,所以,函數(shù)為上的奇函數(shù),且,,.當時,,此時,函數(shù)單調遞增,由,可得,解得;當時,則函數(shù)單調遞增,由,可得,解得.綜上所述,使得成立的的取值范圍是.故選:B.【點睛】本題考查利用函數(shù)的單調性求解函數(shù)不等式,根據(jù)導數(shù)不等式的結構構造合適的函數(shù)是解題的關鍵,考查分析問題和解決問題的能力,屬于中等題.6、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.7、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.8、D【解析】由向量平行充要條件代入解之即可解決.【詳解】由,可知,則有,解之得故選:D9、A【解析】根據(jù)對數(shù)函數(shù)的單調性,以及根式的運算,確定的大小關系,則問題得解.【詳解】因為,即;又,故.故選:A.10、A【解析】根據(jù)題意,由正四面體的性質可得:,可得,由E是棱中點,可得,代入,利用數(shù)量積運算性質即可得出.【詳解】如圖所示由正四面體的性質可得:可得:是棱中點故選:【點睛】本題考查空間向量的線性運算,考查立體幾何中的垂直關系,考查轉化與化歸思想,屬于中等題型.11、B【解析】判定函數(shù)單調性,再利用導數(shù)結合函數(shù)在的單調性列式計算作答.【詳解】由函數(shù)得:,當且僅當時取“=”,則在R上單調遞減,于是得函數(shù)在上單調遞減,即,,即,而在上單調遞減,當時,,則,所以k的取值范圍是.故選:B12、D【解析】設,,根據(jù)和求出a的值,由,兩點之間直線最短,可得的最小值為,根據(jù)坐標求出即可.【詳解】設,,所以,由,所以,因為且,所以,整理可得,又動點M的軌跡是,所以,解得,所以,又,所以,因為,所以的最小值,當M在位置或時等號成立.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先利用二項展開式的通項公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項為,令,則,即,故,令,得.又,所以故故答案為:14、【解析】根據(jù)等比數(shù)列的定義,結合已知條件,代值計算即可求得結果.【詳解】因為是等比數(shù)列,設其公比為,又,,故可得,解得.故答案為:.15、【解析】利用正四面體內任一點可將正四面體分成四個小四面體,令它們的高分別為,由體積相等即可求得;【詳解】正三角形邊長為a,則該三角形內任一點到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內,任一點到其四個面的距離分別為,即有:,解得故答案為:【點睛】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;16、0【解析】作出約束條件對應的可行域,當目標函數(shù)過點時,取得最小值,求解即可.【詳解】作出約束條件對應的可行域,如下圖陰影部分,聯(lián)立,可得交點為,目標函數(shù)可化為,當目標函數(shù)過點時,取得最小值,即.故答案為:0.【點睛】本題考查線性規(guī)劃,考查數(shù)形結合的數(shù)學思想的應用,考查學生的計算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意可得:點的軌跡為橢圓,設標準方程為:,則,,,解出可得橢圓的標準方程(2)設,,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關系代入解得【詳解】解:(1)由題意可得:點的軌跡為橢圓,設標準方程為:,則,,,可得橢圓的標準方程為:(2)設,,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當時,能使【點睛】本題考查了橢圓的標準方程及其性質、直線與橢圓相交弦長問題、數(shù)量積運算性質、一元二次方程的根與系數(shù)的關系,考查了推理能力與計算能力,屬于難題18、,【解析】先求導函數(shù),再根據(jù)導函數(shù)得到單調區(qū)間,比較極值和端點值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數(shù)在和上單調遞增,在上單調遞減,又,,,所以,19、(1),單調遞增區(qū)間為.(2)【解析】(1)先利用向量數(shù)量積運算、二倍角公式、輔助角公式求出,再求單增區(qū)間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數(shù),所以.因為直線是函數(shù)圖象的一條對稱軸,所以,所以,又,所以當k=0時,符合題意,此時要求的單調遞增區(qū)間,只需,解得:,所以的單調遞增區(qū)間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.20、(1),(2)①;②【解析】(1)利用等差數(shù)列的通項公式將展開化簡,求得首項,可得;根據(jù)遞推式,確定,再寫出,兩式相減可求得;(2)①根據(jù)等差數(shù)列的性質,采用倒序相加法求得結果;②根據(jù)數(shù)列的通項的特征,采用錯位相減法求和即可.【小問1詳解】設數(shù)列{}的公差為d,則d=1,由,即,可得,所以{}的通項公式為;由可知:當,得,當時,,兩式相減得;,即,所以{}是以為首項,為公比的等比數(shù)列,故.【小問2詳解】①,兩式相加,得所以;②,,兩式相減得:,故.21、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標系,根據(jù)題中數(shù)據(jù)可得、、的坐標,利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點到平面的距離公式加以計算即可得到點到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設,,是平面的一個法向量,可得,取,得,,,,是平面的一個法向量,同理可得,1,是平面的一個法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個法向量,,2,,得,點到平面的距離22、(1)3x+4y+5=0(2)x2+y2=17【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論