2025屆福建省泉港市泉港一中高一數(shù)學第一學期期末達標檢測試題含解析_第1頁
2025屆福建省泉港市泉港一中高一數(shù)學第一學期期末達標檢測試題含解析_第2頁
2025屆福建省泉港市泉港一中高一數(shù)學第一學期期末達標檢測試題含解析_第3頁
2025屆福建省泉港市泉港一中高一數(shù)學第一學期期末達標檢測試題含解析_第4頁
2025屆福建省泉港市泉港一中高一數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆福建省泉港市泉港一中高一數(shù)學第一學期期末達標檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)是偶函數(shù)的是()A. B.C. D.2.為了得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位3.已知集合,則A B.C. D.4.已知函數(shù),則()A.5 B.2C.0 D.15.,,且(3)(λ),則λ等于()A. B.-C.± D.16.若則A. B.C. D.7.已知冪函數(shù)的圖象過點,若,則實數(shù)的值為()A. B.C. D.48.命題“”為真命題的一個充分不必要條件是()A. B.C. D.9.下列區(qū)間是函數(shù)的單調(diào)遞減區(qū)間的是()A. B.C. D.10.函數(shù)的部分圖象如圖,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若點在角終邊上,則的值為_____12.已知函數(shù)圖像關(guān)于對稱,當時,恒成立,則滿足的取值范圍是_____________13.已知在上的最大值和最小值分別為和,則的最小值為__________14.已知,則______________15.函數(shù)在上存在零點,則實數(shù)a的取值范圍是______16.已知指數(shù)函數(shù)的解析式為,則函數(shù)的零點為_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)若,解不等式;(2)若函數(shù)恰有三個零點,,,求的取值范圍18.已知二次函數(shù)滿足:,且該函數(shù)的最小值為1.(1)求此二次函數(shù)的解析式;(2)若函數(shù)的定義域為(其中),問是否存在這樣的兩個實數(shù)m,n,使得函數(shù)的值域也為A?若存在,求出m,n的值;若不存在,請說明理由.19.已知函數(shù),其中(1)求函數(shù)的定義域;(2)判斷的奇偶性,并說明理由;(3)若,求使成立的的集合20.某漁業(yè)公司年初用98萬元購進一艘漁船,用于捕撈.已知該船使用中所需的各種費用e(單位:萬元)與使用時間n(,單位:年)之間的函數(shù)關(guān)系式為,該船每年捕撈的總收入為50萬元(1)該漁船捕撈幾年開始盈利(即總收入減去成本及所有使用費用為正值)?(2)若當年平均盈利額達到最大值時,漁船以30萬元賣出,則該船為漁業(yè)公司帶來的收益是多少萬元?21.已知直線經(jīng)過點和點.(Ⅰ)求直線的方程;(Ⅱ)若圓的圓心在直線上,并且與軸相切于點,求圓的方程

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用偶函數(shù)的性質(zhì)對每個選項判斷得出結(jié)果【詳解】A選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù),A選項錯誤B選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù)C選項:函數(shù)定義域為,,故函數(shù)為奇函數(shù)D選項:函數(shù)定義域為,,故函數(shù)是偶函數(shù)故選D【點睛】本題考查函數(shù)奇偶性的定義,在證明函數(shù)奇偶性時需注意函數(shù)的定義域;還需掌握:奇函數(shù)加減奇函數(shù)為奇函數(shù);偶函數(shù)加減偶函數(shù)為偶函數(shù);奇函數(shù)加減偶函數(shù)為非奇非偶函數(shù);奇函數(shù)乘以奇函數(shù)為偶函數(shù);奇函數(shù)乘以偶函數(shù)為奇函數(shù);偶函數(shù)乘以偶函數(shù)為偶函數(shù)2、A【解析】根據(jù)函數(shù)平移變換的方法,由即,只需向右平移個單位即可.【詳解】根據(jù)函數(shù)平移變換,由變換為,只需將的圖象向右平移個單位,即可得到的圖像,故選A.【點睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關(guān)鍵是看自變量上的變化量,屬于中檔題.3、C【解析】分析:先解指數(shù)不等式得集合A,再根據(jù)偶次根式被開方數(shù)非負得集合B,最后根據(jù)補集以及交集定義求結(jié)果.詳解:因為,所以,因為,所以因此,選C.點睛:合的基本運算的關(guān)注點(1)看元素組成.集合是由元素組成的,從研究集合中元素的構(gòu)成入手是解決集合運算問題的前提(2)有些集合是可以化簡的,先化簡再研究其關(guān)系并進行運算,可使問題簡單明了,易于解決(3)注意數(shù)形結(jié)合思想的應用,常用的數(shù)形結(jié)合形式有數(shù)軸、坐標系和Venn圖4、C【解析】由分段函數(shù),選擇計算【詳解】由題意可得.故選:C.【點睛】本題考查分段函數(shù)的求值,屬于簡單題5、A【解析】利用向量垂直的充要條件列出方程,利用向量的運算律展開并代值,即可求出λ【詳解】∵,∴=0,∵(3)⊥(λ),∴(3)?(λ)=0,即3λ2+(2λ﹣3)﹣22=0,∴12λ﹣18=0,解得λ=故選A6、A【解析】集合A三個實數(shù)0,1,2,而集合B表示的是大于等于1小于2的所有實數(shù),所以兩個集合的交集{1},故選A.考點:集合的運算.7、D【解析】根據(jù)已知條件,推出,再根據(jù),即可得出答案.【詳解】由題意得:,解得,所以,解得:,故選:D【點睛】本題考查冪函數(shù)的解析式,屬于基礎題.8、D【解析】先確定“”為真命題時的范圍,進而找到對應選項.【詳解】“”為真命題,可得,因為,故選:D.9、D【解析】取,得到,對比選項得到答案.【詳解】,取,,解得,,當時,D選項滿足.故選:D.10、C【解析】先利用圖象中的1和3,求得函數(shù)的周期,求得,最后根據(jù)時取最大值1,求得,即可得解【詳解】解:根據(jù)函數(shù)的圖象可得:函數(shù)的周期為,∴,當時取最大值1,即,又,所以,故選:C【點睛】本題主要考查了由的部分圖象確定其解析式,考查了五點作圖的應用和圖象觀察能力,屬于基本知識的考查.屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】由三角函數(shù)定義得12、【解析】由函數(shù)圖像關(guān)于對稱,可得函數(shù)是偶函數(shù),由當時,恒成立,可得函數(shù)在上為增函數(shù),從而將轉(zhuǎn)化為,進而可求出取值范圍【詳解】因為函數(shù)圖像關(guān)于對稱,所以函數(shù)是偶函數(shù),所以可轉(zhuǎn)化為因為當時,恒成立,所以函數(shù)在上為增函數(shù),所以,解得,所以取值范圍為,故答案為:13、【解析】如圖:則當時,即時,當時,原式點睛:本題主要考查了分段函數(shù)求最值問題,在定義域為動區(qū)間的情況下進行分類討論,先求出最大值與最小值的情況,然后計算,本題的關(guān)鍵是要注意數(shù)形結(jié)合,結(jié)合圖形來研究最值問題,本題有一定的難度14、100【解析】分析得出得解.【詳解】∴故答案為:100【點睛】由函數(shù)解析式得到是定值是解題關(guān)鍵.15、【解析】由可得,求出在上的值域,則實數(shù)a的取值范圍可求【詳解】由,得,即由,得,又∵函數(shù)在上存在零點,即實數(shù)a的取值范圍是故答案為【點睛】本題考查函數(shù)零點的判定,考查函數(shù)值域的求法,是基礎題16、1【解析】解方程可得【詳解】由得,故答案為:1三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)分當時,當時,討論去掉絕對值,由一元二次不等式的求解方法可得答案;(2)得出分段函數(shù)的解析式,根據(jù)二次函數(shù)的性質(zhì)和根與系數(shù)的關(guān)系可求得答案.【小問1詳解】解:當時,原不等式可化為…①(?。┊敃r,①式化為,解得,所以;(ⅱ)當時,①式化為,解得,所以綜上,原不等式的解集為【小問2詳解】解:依題意,因為,且二次函數(shù)開口向上,所以當時,函數(shù)有且僅有一個零點所以時,函數(shù)恰有兩個零點所以解得不妨設,所以,是方程的兩相異實根,則,所以因為是方程的根,且,由求根公式得因為函數(shù)在上單調(diào)遞增,所以,所以.所以.所以a的取值范圍是18、(1);(2)存在,,.【解析】(1)設,由,求出值,可得二次函數(shù)的解析式;(2)分①當時,②當時,③當時,三種情況討論,可得存在滿足條件的,,其中,【詳解】解:(1)依題意,可設,因,代入得,所以.(2)假設存在這樣m,n,分類討論如下:當時,依題意,即兩式相減,整理得,代入進一步得,產(chǎn)生矛盾,故舍去;當時,依題意,若,,解得或(舍去);若,,產(chǎn)生矛盾,故舍去;當時,依題意,即解得,產(chǎn)生矛盾,故舍去綜上:存在滿足條件的m,n,其中,19、(1)(2)奇函數(shù)(3)【解析】(本小題滿分14分)(1)由,得∴函數(shù)的定義域為.…4分(2)函數(shù)的定義域為關(guān)于原點對稱,∵∴是奇函數(shù).……………8分(3)由,得.…10分∴,由得,∴…12分得,解得.∴使成立的的集合是.……14分20、(1)該漁船捕撈3年開始盈利;(2)萬元.【解析】(1)由題設可得,解一元二次不等式即可確定第幾年開始盈利.(2)由平均盈利額,應用基本不等式求最值注意等號成立條件,進而計算總收益.【小問1詳解】由題意,漁船捕撈利潤,解得,又,,故,∴該漁船捕撈3年開始盈利.【小問2詳解】由題意,平均盈利額,當且僅當時等號成立,∴在第7年平均盈利額達到最大,總收益為萬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論