2025屆江西省新余市渝水區(qū)第一中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
2025屆江西省新余市渝水區(qū)第一中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
2025屆江西省新余市渝水區(qū)第一中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
2025屆江西省新余市渝水區(qū)第一中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
2025屆江西省新余市渝水區(qū)第一中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江西省新余市渝水區(qū)第一中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若向量,,,則()A. B.C. D.2.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎,則這名選手中獲獎的人數(shù)為A. B.C. D.3.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形4.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標(biāo)原點的距離等于()A.7 B.10C.12 D.145.已知向量,,且,則實數(shù)等于()A1 B.2C. D.6.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.7.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.8.在等比數(shù)列中,,,則等于()A. B.5C. D.99.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.610.五行學(xué)說是中華民族創(chuàng)造的哲學(xué)思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.11.過點且垂直于直線的直線方程為()A. B.C. D.12.已知直線l1:y=x+2與l2:2ax+y﹣1=0垂直,則a=()A. B.C.﹣1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.總書記在2021年2月25日召開的全國脫貧攻堅總結(jié)表彰大會上發(fā)表重要講話,莊嚴(yán)宣告,在迎來中國共產(chǎn)黨成立一百周年的重要時刻,我國脫貧攻堅取得了全面勝利.在脫貧攻堅過程中,為了解某地農(nóng)村經(jīng)濟情況,工作人員對該地農(nóng)戶家庭年收入進行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)此頻率分布直方圖,下列結(jié)論中所存確結(jié)論的序號是____________①該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率估計為6%;②該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計為10%;③估計該地農(nóng)戶家庭年收入的平均值不超過6.5萬元;④估計該地有一半以上農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間14.若曲線在處的切線平行于x軸,則___________.15.在等比數(shù)列中,已知,則________16.已知數(shù)列的通項公式,則數(shù)列的前5項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值18.(12分)在三棱柱中,側(cè)面正方形的中心為點平面,且,點滿足(1)若平面,求的值;(2)求點到平面的距離;(3)若平面與平面所成角的正弦值為,求的值19.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)當(dāng)時,設(shè),求函數(shù)的單調(diào)區(qū)間.20.(12分)已知數(shù)列為正項等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項公式;(2)若數(shù)列的前n項和為,數(shù)列滿足,證明:數(shù)列的前n項和21.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?22.(10分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學(xué)探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A2、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進而可求出結(jié)果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數(shù)為.故選A【點睛】本題主要考查頻率分布直方圖,會根據(jù)頻率分布直方圖求頻率即可,屬于常考題型.3、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.4、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標(biāo)原點的距離.【詳解】因為橢圓,,所以,結(jié)合得,,取的中點,連接,所以為的中位線,所以.故選:A.5、C【解析】利用空間向量垂直的坐標(biāo)表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C6、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.7、A【解析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關(guān)鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關(guān)系是求解的關(guān)鍵.8、D【解析】由等比數(shù)列的項求公比,進而求即可.【詳解】由題設(shè),,∴故選:D9、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B10、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C11、A【詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點睛】本題主要考查直線方程的求法,屬基礎(chǔ)題.12、A【解析】利用兩直線垂直斜率關(guān)系,即可求解.【詳解】直線l1:y=x+2與l2:2ax+y﹣1=0垂直,.故選:A【點睛】本題考查兩直線垂直間的關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】利用頻率分布直方圖中頻率的求解方法,通過求解頻率即可判斷選項①,②,④,利用平均值的計算方法,即可判斷選項③【詳解】解:對于①,該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率為,故選項①正確;對于②,該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率為,故選項②正確;對于③,估計該地農(nóng)戶家庭年收入的平均值為萬元,故選項③錯誤;對于④,家庭年收入介于4.5萬元至8.5萬元之間的頻率為,故估計該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間,故選項④正確故答案為:①②④14、【解析】求出導(dǎo)函數(shù)得到函數(shù)在時的導(dǎo)數(shù),由導(dǎo)數(shù)值為0求得a的值【詳解】由,得,則,∵曲線在點處的切線平行于x軸,∴,即.故答案為:15、2【解析】由等比數(shù)列的相關(guān)性質(zhì)進行求解.【詳解】由等比數(shù)列的相關(guān)性質(zhì)得:故答案為:216、【解析】根據(jù)數(shù)列的通項公式可得答案.【詳解】因為,所以數(shù)列的前5項為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為18、(1);(2);(3)或.【解析】(1)連接ME,證明即可計算作答.(2)以為原點,的方向分別為軸正方向建立空間直角坐標(biāo)系,借助空間向量計算點到平面的距離即可.(3)由(2)中空間直角坐標(biāo)系,借助空間向量求平面與平面所成角的余弦即可計算作答.【小問1詳解】在三棱柱中,因,即點在上,連接ME,如圖,因平面面,面面,則有,而為中點,于是得為的中點,所以.【小問2詳解】在三棱柱中,面面,則點到平面的距離等于點到平面的距離,又為正方形,即,而平面,以為原點,的方向分別為軸正方向建立空間直角坐標(biāo)系,如圖,依題意,,則,,設(shè)平面的法向量為,則,令,得,又,則到平面的距離,所以點到平面的距離為.【小問3詳解】因,則,,設(shè)面的法向量為,則,令,得,于是得,而平面與平面所成角的正弦值為,則,即,整理得,解得或,所以的值是或.【點睛】易錯點睛:空間向量求二面角時,一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進行向量運算,要認真細心,準(zhǔn)確計算.19、(1);(2)增區(qū)間為,減區(qū)間為.【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)求g(x)導(dǎo)數(shù),導(dǎo)數(shù)同分分解因式,討論其正負即可判斷g(x)的單調(diào)性.【小問1詳解】當(dāng)時,,則,又,設(shè)所求切線的斜率為,則,則切線的方程為:,化簡即得切線的方程為:.【小問2詳解】,其定義域為,,∵,∴ax+1>0,∴當(dāng)時,;當(dāng)時,.的增區(qū)間為,減區(qū)間為.20、(1),(2)證明見解析【解析】(1)將已知條件用首項和公比表示,聯(lián)立方程組即可求解數(shù)列的通項公式,然后由對數(shù)的運算性質(zhì)即可得數(shù)列的通項公式;(2)由(1)求出,然后利用裂項相消求和法求出數(shù)列的前n項和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以21、(1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設(shè)池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當(dāng)x=40時,則有可使得總造價最低,最低造價是268800元.考點:不等式求解最值點評:主要是考查了不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論