版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省蛟河高級中學2025屆數(shù)學高一上期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在梯形中,,,.將梯形繞所在直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為A. B.C. D.2.設(shè),則的值為()A.0 B.1C.2 D.33.已知函數(shù)(,且)的圖象恒過點,若角的終邊經(jīng)過點,則的值為()A. B.C. D.4.函數(shù)的圖象的一個對稱中心是()A B.C. D.5.從2020年起,北京考生的高考成績由語文、數(shù)學、外語3門統(tǒng)一高考成績和考生選考的3門普通高中學業(yè)水平考試等級性考試科目成績構(gòu)成,等級性考試成績位次由高到低分為A、B、C、D、E,各等級人數(shù)所占比例依次為:A等級15%,B等級40%,C等級30%,D等級14%,E等級1%.現(xiàn)采用分層抽樣的方法,從參加歷史等級性考試的學生中抽取200人作為樣本,則該樣本中獲得B等級的學生人數(shù)為()A.30 B.60C.80 D.286.已知函數(shù)的定義域和值域都是,則()A. B.C.1 D.7.已知實數(shù)滿足方程,則的最小值和最大值分別為()A.-9,1 B.-10,1C.-9,2 D.-10,28.已知函數(shù),則函數(shù)在上單調(diào)遞增,是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.在《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱為“塹堵”.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某“塹堵”的三視圖,則該“塹堵”的側(cè)面積為()A.48 B.42C.36 D.3010.設(shè)函數(shù)若關(guān)于的方程有四個不同的解且則的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)平面向量,,則__________.若與的夾角為鈍角,則的取值范圍是__________12.的值為______13.化簡________.14.已知角的終邊經(jīng)過點,則的值等于_____15.設(shè)函數(shù),若互不相等的實數(shù)、、滿足,則的取值范圍是_________16.已知是球上的點,,,,則球的表面積等于________________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.年新冠肺炎仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強的“德爾塔”變異毒株、拉姆達”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護依然不能有絲毫放松.在日常防護中,口罩是必不可少的防護用品.已知某口罩的固定成本為萬元,每生產(chǎn)萬箱,需另投入成本萬元,為年產(chǎn)量單位:萬箱;已知通過市場分析,如若每萬箱售價萬元時,該廠年內(nèi)生產(chǎn)的商品能全部售完.利潤銷售收入總成本(1)求年利潤與萬元關(guān)于年產(chǎn)量萬箱的函數(shù)關(guān)系式;(2)求年產(chǎn)量為多少萬箱時,該口罩生產(chǎn)廠家所獲得年利潤最大18.如圖,以軸的非負半軸為始邊作角與,它們的終邊分別與單位圓相交于點,已知點的橫坐標為(1)求的值;(2)若,求的值19.已知函數(shù)是定義域為的奇函數(shù),當時,.(1)求出函數(shù)在上解析式;(2)若與有3個交點,求實數(shù)的取值范圍.20.如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求證:BC⊥AF;(2)求幾何體EF-ABCD的體積21.在平面直角坐標系中,為坐標原點,已知兩點、在軸的正半軸上,點在軸的正半軸上.若,()求向量,夾角的正切值()問點在什么位置時,向量,夾角最大?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意可知旋轉(zhuǎn)后的幾何體如圖:
直角梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體是一個底面半徑為1,母線長為2的圓柱挖去一個底面半徑同樣是1、高為1的圓錐后得到的組合體,所以該組合體的體積為故選C.考點:1、空間幾何體的結(jié)構(gòu)特征;2、空間幾何體的體積.2、C【解析】根據(jù)分段函數(shù),結(jié)合指數(shù),對數(shù)運算計算即可得答案.【詳解】解:由于,所以.故選:C.【點睛】本題考查對數(shù)運算,指數(shù)運算,分段函數(shù)求函數(shù)值,考查運算能力,是基礎(chǔ)題.3、A【解析】令指數(shù)函數(shù)的指數(shù)為零即可求出指數(shù)型函數(shù)過定點的坐標,再根據(jù)三角函數(shù)的定義計算可得;【詳解】解:因為函數(shù)(,且),令,即時,所以函數(shù)恒過定點,又角的終邊經(jīng)過點,所以,故選:A4、B【解析】利用正弦函數(shù)的對稱性質(zhì)可知,,從而可得函數(shù)的圖象的對稱中心為,再賦值即可得答案【詳解】令,,解得:,.所以函數(shù)的圖象的對稱中心為,.當時,就是函數(shù)的圖象的一個對稱中心,故選:B.5、C【解析】根據(jù)分層抽樣的概念即得【詳解】由題可知該樣本中獲得B等級的學生人數(shù)為故選:C6、A【解析】分和,利用指數(shù)函數(shù)的單調(diào)性列方程組求解.【詳解】當時,,方程組無解當時,,解得故選:A.7、A【解析】即為y-2x可看作是直線y=2x+b在y軸上的截距,當直線y=2x+b與圓相切時,縱截距b取得最大值或最小值,此時,解得b=-9或1.所以y-2x的最大值為1,最小值為-9故選A.8、A【解析】根據(jù)充分、必要條件的定義證明即可.【詳解】因為函數(shù)在上單調(diào)遞增,則,恒成立,即恒成立,,即.所以“”是“”的充分不必要條件.故選:A.9、C【解析】由三視圖可知該“塹堵”的高為,其底面是直角邊為,斜邊為的三角形,從而可求出其側(cè)面積.【詳解】解:由三視圖易得該“塹堵”的高為,其底面是直角邊為,斜邊為的三角形,故其側(cè)面積為.故選:C.10、A【解析】畫出函數(shù)的圖像,通過觀察的圖像與的交點,利用對稱性求得與的關(guān)系,根據(jù)對數(shù)函數(shù)的性質(zhì)得到與的關(guān)系.再利用函數(shù)的單調(diào)性求得題目所求式子的取值范圍.【詳解】畫出函數(shù)的圖像如下圖所示,根據(jù)對稱性可知,和關(guān)于對稱,故.由于,故.令,解得,所以.,由于函數(shù)在區(qū)間為減函數(shù),故,故選A.【點睛】本小題主要考查函數(shù)的對稱性,考查對數(shù)函數(shù)的性質(zhì),以及函數(shù)圖像的交點問題,還考查了利用函數(shù)的單調(diào)性求函數(shù)的值域的方法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】(1)由題意得(2)∵與的夾角為鈍角,∴,解得又當時,向量,共線反向,滿足,但此時向量的夾角不是鈍角,故不合題意綜上的取值范圍是答案:;12、【解析】直接利用對數(shù)的運算法則和指數(shù)冪的運算法則求解即可【詳解】13、【解析】觀察到,故可以考慮直接用輔助角公式進行運算.【詳解】故答案為:.14、【解析】因為角的終邊經(jīng)過點,過點P到原點的距離為,所以,所以,故填.15、【解析】作出函數(shù)的圖象,設(shè),求出的取值范圍以及的值,由此可求得的取值范圍.【詳解】作出函數(shù)的圖象,設(shè),如下圖所示:二次函數(shù)的圖象關(guān)于直線對稱,則,由圖可得,可得,解得,所以,.故答案為:.【點睛】關(guān)鍵點點睛:本題考查零點有關(guān)代數(shù)式的取值范圍的求解,解題的關(guān)鍵在于利用利用圖象結(jié)合對稱性以及對數(shù)運算得出零點相關(guān)的等式與不等式,進而求解.16、【解析】由已知S,A,B,C是球O表面上的點,所以,又,,所以四面體的外接球半徑等于以長寬高分別以SA,AB,BC三邊長為長方體的外接球的半徑,因為,,所以,所以球的表面積點睛:本題考查了球內(nèi)接多面體,球的表面積公式,屬于中檔題.其中根據(jù)已知條件求球的直徑(半徑)是解答本題的關(guān)鍵三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)萬箱【解析】(1)分,兩種情況,結(jié)合利潤銷售收入總成本公式,即可求解(2)根據(jù)已知條件,結(jié)合二次函數(shù)的性質(zhì),以及基本不等式,分類討論求得最大值后比較可得【小問1詳解】當時,,當時,,故關(guān)于的函數(shù)解析式為小問2詳解】當時,,故當時,取得最大值,當時,,當且僅當,即時,取得最大值,綜上所述,當時,取得最大值,故年產(chǎn)量為萬箱時,該口罩生產(chǎn)廠家所獲得年利潤最大18、(1);(2).【解析】(1)根據(jù)三角函數(shù)的定義,求三角函數(shù),代入求值;(2)由條件可知,,利用誘導公式,結(jié)合三角函數(shù)的定義,求函數(shù)值.【小問1詳解】的橫坐標為,.【小問2詳解】由題可得,,.19、(1);(2).【解析】(1)利用函數(shù)的奇偶性求出函數(shù)的解析式即可(2)與圖象交點有3個,畫出圖象觀察,求得實數(shù)的取值范圍【詳解】(1)①由于函數(shù)是定義域為的奇函數(shù),則;②當時,,因為是奇函數(shù),所以.所以.綜上:.(2)圖象如下圖所示:單調(diào)增區(qū)間:單調(diào)減區(qū)間:.因為方程有三個不同的解,由圖象可知,,即20、(1)詳見解析;(2).【解析】(1)推導出FC⊥CD,F(xiàn)C⊥BC,AC⊥BC,由此BC⊥平面ACF,從而BC⊥AF(2)推導出AC=BC=2,AB4,從而AD=BCsin∠ABC=22,由V幾何體EF﹣ABCD=V幾何體A﹣CDEF+V幾何體F﹣ACB,能求出幾何體EF﹣ABCD的體積【詳解】(1)因為平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四邊形CDEF是正方形,所以FC⊥CD,F(xiàn)C?平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因為△ACB是腰長為2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因為△ABC是腰長為2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因為DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V幾何體EF-ABCD=V幾何體A-CDEF+V幾何體F-ACB==+==【點睛】本題考查線線垂直的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題21、(1)見解析;(2)見解析.【解析】分析:()設(shè)向量與軸的正半軸所成的角分別為,則向量所成的夾角為,由兩角差的正切公式可得向量夾角的正切值為;()由(1)知,利用基本不等式即可的結(jié)果.詳解:(1)由題意知,A的坐標為A(0,6),B的坐標為B(0,4),C(x,0),x>0設(shè)向量,與x軸的正半軸所成的角分別為α,β,則向量,所成的夾角為|β﹣α|=|α﹣β|,由三角函數(shù)的定義知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夾角的正切值等于tan(α﹣β)==,故所求向量,夾角的正切值為tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值為時,夾角|α﹣β|的值也最大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度云南省高校教師資格證之高等教育心理學考前沖刺試卷A卷含答案
- 第5單元 圓 單元測試(含答案)2024-2025學年六年級上冊數(shù)學人教版
- 2024-2025學年廣東省部分學校高三(上)大聯(lián)考模擬預測物理試卷(含答案)
- 數(shù)據(jù)中心的未來發(fā)展
- 福建師范大學協(xié)和學院《生活藥學》2021-2022學年第一學期期末試卷
- 福建師范大學《政治學與行政學名著選讀》2022-2023學年第一學期期末試卷
- 福建師范大學《刑事案例與法條分析》2023-2024學年第一學期期末試卷
- 福建師范大學《全媒體現(xiàn)場主持實訓》2022-2023學年第一學期期末試卷
- 福建師范大學《國外社會保障制度概述》2023-2024學年第一學期期末試卷
- 第8章 小學生心理咨詢與輔導課件
- 水平定向鉆施工機械
- 室內(nèi)設(shè)計行業(yè)優(yōu)勢與劣勢分析
- 2024年滁州市中級人民法院招考聘用司法輔助人員高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 城市管理知識競賽考試題庫200題(含答案)
- 北京市東城區(qū)六年級(上)期末語文試卷
- 鄉(xiāng)村振興農(nóng)村設(shè)計案例分析報告
- 【體能大循環(huán)】聚焦體能循環(huán)-探索運動奧秘-幼兒園探究體能大循環(huán)有效開展策略課件
- 《化工設(shè)備檢維修實訓》課程標準(煤炭清潔利用技術(shù))
- AI在航空航天領(lǐng)域中的應用
- 餐飲員工心態(tài)培訓課件
- 2024年注冊消防工程師題庫及參考答案【完整版】
評論
0/150
提交評論