版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州七縣2025屆數(shù)學高二上期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點F為拋物線C:的焦點,點,若點Р為拋物線C上的動點,當取得最大值時,點P恰好在以F,為焦點的橢圓上,則該橢圓的離心率為()A. B.C. D.2.已知F1(-5,0),F(xiàn)2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線3.某企業(yè)為節(jié)能減排,用萬元購進一臺新設備用于生產(chǎn).第一年需運營費用萬元,從第二年起,每年運營費用均比上一年增加萬元,該設備每年生產(chǎn)的收入均為萬元.設該設備使用了年后,年平均盈利額達到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.4.如圖所示,向量在一條直線上,且則()A. B.C. D.5.曲線在處的切線如圖所示,則()A. B.C. D.6.已知點在拋物線的準線上,則該拋物線的焦點坐標是()A. B.C. D.7.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.98.已知,是空間中的任意兩個非零向量,則下列各式中一定成立的是()A. B.C. D.9.已知雙曲線,且三個數(shù)1,,9成等比數(shù)列,則下列結(jié)論正確的是()A.的焦距為 B.的漸近線方程為C.的離心率為 D.的虛軸長為10.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項和Sn滿足,則實數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)11.若,則()A B.C. D.12.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量X服從正態(tài)分布,若,則______14.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________15.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______16.已知橢圓的左、右焦點分別為F1,F(xiàn)2,P為橢圓上一點,且(O為坐標原點).若,則橢圓的離心率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,過左焦點且垂直于長軸的弦長為.(1)求橢圓的標準方程;(2)點為橢圓的長軸上的一個動點,過點且斜率為的直線交橢圓于兩點,證明為定值.18.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關(guān)于軸對稱時的面積是否達到最大?并說明理由.19.(12分)已知,.(1)若,為假命題,求的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍.20.(12分)某校從高三年級學生中隨機抽取名學生的某次數(shù)學考試成績,將其成績分成,,,,的組,制成如圖所示的頻率分布直方圖.(1)求圖中的值;(2)估計這組數(shù)據(jù)的平均數(shù);(3)若成績在內(nèi)的學生中男生占.現(xiàn)從成績在內(nèi)的學生中隨機抽取人進行分析,求人中恰有名女生的概率.21.(12分)近年來,我國電子商務蓬勃發(fā)展.2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為80次.(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認為“網(wǎng)購者對商品滿意與對服務滿意之間有關(guān)系”?對服務滿意對服務不滿意合計對商品滿意80對商品不滿意10合計200(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設對商品和服務都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.臨界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.89710.828的觀測值:(其中).22.(10分)已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,離心率為,橢圓C上點M滿足(1)求橢圓C的標準方程:(2)若過坐標原點的直線l交橢圓C于P,Q兩點,求線段PQ長為時直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】過點P引拋物線準線的垂線,交準線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當最小,即直線與拋物線相切時滿足題意,進而解出此時P的坐標,解得答案即可.【詳解】如圖,易知點在拋物線C的準線上,作PD垂直于準線,且與準線交于點D,記,則.由拋物線定義可知,.由圖可知,當取得最大值時,最小,此時直線與拋物線相切,設切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.2、D【解析】由雙曲線定義結(jié)合參數(shù)a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D3、D【解析】設該設備第年的營運費為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設該設備第年的營運費為萬元,則數(shù)列是以2為首項,2為公差的等差數(shù)列,則,則該設備使用年的營運費用總和為,設第n年的盈利總額為,則,故年平均盈利額為,因為,當且僅當時,等號成立,故當時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數(shù)列在實際問題中的應用,注意根據(jù)題設條件概括出數(shù)列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.4、D【解析】根據(jù)向量加法的三角形法則得到化簡得到故答案為D5、C【解析】由圖可知切線斜率為,∴.故選:C.6、C【解析】首先表示出拋物線的準線,根據(jù)點在拋物線的準線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準線為因為在拋物線的準線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于基礎題.7、B【解析】設,,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設,,,與橢圓聯(lián)立,解得:,故選:B8、C【解析】利用向量數(shù)量積的定義及運算性質(zhì)逐一分析各選項即可得答案.【詳解】解:對A:因為,所以,故選項A錯誤;對B:因為,故選項B錯誤;對C:因為,故選項C正確;對D:因為,故選項D錯誤故選:C.9、D【解析】先求得的值,然后根據(jù)雙曲線的知識對選項進行分析,從而確定正確答案.【詳解】方程表示雙曲線,則,成等比數(shù)列,則,所以雙曲線方程為,所以,故雙曲線的焦距為,A選項錯誤.漸近線方程為,B選項錯誤.離心率,C選項錯誤.虛軸長,D選項正確.故選:D10、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項公式.再根據(jù)新定義的意義,代入解不等式即可求得實數(shù)的取值范圍.【詳解】因為所以當時,兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當時,所以,則由“差半遞增”數(shù)列的定義可知化簡可得解不等式可得即實數(shù)的取值范圍為故選:A.11、D【解析】直接利用向量的坐標運算求解即可【詳解】因為,所以,故選:D12、A【解析】由正切函數(shù)性質(zhì),應用定義法判斷條件間充分、必要關(guān)系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.14、【解析】根據(jù)題意可以設,求其導數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設,則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當時,;當時,;當時,;當時,;若,則;若,則或,解得或或;則的解集為.故答案為:.15、##【解析】根據(jù)題設及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設,,整理得:,所以,而,故.故答案為:.16、##【解析】由向量的數(shù)量積得,從而得,利用勾股定理和橢圓的定義可得的等式,從而求得離心率【詳解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)借助題設條件建立方程組求解;(2)依據(jù)題設運用直線與橢圓的位置關(guān)系探求.試題解析:(1)由,可得橢圓方程.(2)設的方程為,代入并整理得:.設,,則,同理則.所以,是定值.考點:橢圓的標準方程幾何性質(zhì)及直線與橢圓的位置關(guān)系等有關(guān)知識的綜合運用【易錯點晴】本題考查的是橢圓的標準方程等基礎知識及直線與橢圓的位置關(guān)系等知識的綜合性問題.解答本題的第一問時,直接依據(jù)題設條件運用橢圓的幾何性質(zhì)和橢圓的有關(guān)概念建立方程組,進而求得橢圓的標準方程為;第二問的求解過程中,先設直線的方程為,再借助二次方程中根與系數(shù)之間的關(guān)系,依據(jù)坐標之間的關(guān)系進行計算探求,從而使得問題獲解.18、(1);(2);(3)當點與點關(guān)于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結(jié)合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結(jié)論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關(guān)于軸對稱,因此,當點與點關(guān)于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值19、(1)(2)【解析】(1)分別求出命題、為真時參數(shù)的取值范圍,依題意、都為假命題,求出的取值范圍,即可得解;(2)依題意可得是的必要不充分條件,則真包含于,即可得到不等式組,解得即可;【小問1詳解】由,解得,即,由,可得,所以,當時,解得,即,因為為假命題,則、都為假命題,當為假命題時:或當為假命題時:或故當、都為假命題,或綜上可得;【小問2詳解】因為是的必要不充分條件,由(1)可知,,所以真包含于,所以,解得,即20、(1)(2)77(3)【解析】(1)根據(jù)給定條件結(jié)合頻率分布直方圖中各小矩形面積和為1的特點列式計算即得.(2)利用頻率分布直方圖求平均數(shù)的方法直接列式計算即得.(3)求出成績在內(nèi)的學生及男女生人數(shù),再用列舉法即可求出概率.【小問1詳解】由頻率分布直方圖得,解得,所以圖中值是0.020.【小問2詳解】由頻率分布直方圖得這組數(shù)據(jù)的平均數(shù):,所以這組數(shù)據(jù)的平均數(shù)為77.【小問3詳解】數(shù)學成績在內(nèi)的人數(shù)為(人),其中男生人數(shù)為(人),則女生人數(shù)為人,記名男生分別為,,名女生分別為,,,從數(shù)學成績在內(nèi)的人中隨機抽取人進行分析的基本事件為:,共個不同結(jié)果,它們等可能,其中人中恰有名女生的基本事件為,共種結(jié)果,所以人中恰有名女生的概率為為.21、(1)列聯(lián)表見解析,能有;(2)分布列見解析,.【解析】(1)利用數(shù)據(jù)直接填寫聯(lián)列表即可,求出,即可回答是否有的把握認為“網(wǎng)購者對商品滿意與對服務滿意之間有關(guān)系;(2)由題意可得的可能值為0,1,2,3,分別可求其概率,可得分布列,進而可得數(shù)學期望.【詳解】(1)服務滿意對服務不滿意合計對商品滿意8040120對商品不滿意701080合計15050200,因為,所以能有的把握認為“網(wǎng)購者對商品滿意與對服務滿意之間有關(guān)系”(2)每次購物時,對商品和服務都滿意的概率為,且的取值可以是0,1,2,3.;;;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自己所有物贈與合同
- 體外診斷試劑捐贈合同
- 2025年度個人傭金提成與責任協(xié)議4篇
- 2025版?zhèn)€人商鋪房屋買賣合同書3篇
- 2025年全球及中國硬質(zhì)合金絲錐行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球落地式波長色散X射線熒光光譜儀行業(yè)調(diào)研及趨勢分析報告
- 二零二四年度藝術(shù)品寄賣代理服務合同(含市場調(diào)研)3篇
- 23年-24年項目部安全管理人員安全培訓考試題及答案【必刷】
- 23-24年項目部治理人員安全培訓考試題及參考答案(綜合卷)
- 2023年-2024年新入職員工安全教育培訓試題含答案(A卷)
- 2024-2025學年河南省鄭州市高二上期期末考試數(shù)學試卷(含答案)
- 2024年黑河嫩江市招聘社區(qū)工作者考試真題
- 第22單元(二次函數(shù))-單元測試卷(2)-2024-2025學年數(shù)學人教版九年級上冊(含答案解析)
- 兒科學川崎病說課
- 安全常識課件
- 河北省石家莊市2023-2024學年高一上學期期末聯(lián)考化學試題(含答案)
- 小王子-英文原版
- 中學生手機使用管理協(xié)議書
- 給排水科學與工程基礎知識單選題100道及答案解析
- 2024年土地變更調(diào)查培訓
- 2024年全國外貿(mào)單證員鑒定理論試題庫(含答案)
評論
0/150
提交評論