版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
鄂西南三校合作體2025屆高二數(shù)學第一學期期末預測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.在直三棱柱中,側面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.3.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.4.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.15.若兩條平行線與之間的距離是2,則m的值為()A.或11 B.或10C.或12 D.或116.校慶當天,學校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.7.已知集合,,若,則=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}8.在△ABC中,角A,B,C所對的邊分別是a,b,c,若c=1,B=45°,cosA=,則b等于()A. B.C. D.9.若雙曲線一條漸近線被圓所截得的弦長為,則雙曲線的離心率是()A. B.C. D.10.的展開式中的系數(shù)是()A. B.C. D.11.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,第九章“勾股”,講述了“勾股定理”及一些應用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.12.已知角為第二象限角,,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù),滿足.若恒成立,則實數(shù)的取值范圍是______.14.設f(x)=xlnx,若f′(x0)=2,則x0=________15.直線與兩坐標軸相交于,兩點,則線段的垂直平分線的方程為___________.16.設、分別是橢圓的左、右焦點.若是該橢圓上的一個動點,則的最大值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知定點,圓:,點Q為圓上動點,線段MQ的垂直平分線交NQ于點P,記P的軌跡為曲線C(1)求曲線C的方程;(2)過點M與N作平行直線和,分別交曲線C于點A,B和點D,E,求四邊形ABDE面積的最大值18.(12分)已知拋物線過點,是拋物線的焦點,直線交拋物線于另一點,為坐標原點.(1)求拋物線的方程和焦點的坐標;(2)拋物線的準線上是否存在點使,若存在請求出點坐標,若不存在請說明理由.19.(12分)已知拋物線的準線方程是,直線與拋物線相交于M、N兩點(1)求拋物線的方程;(2)求弦長;(3)設O為坐標原點,證明:20.(12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.(1)求橢圓的方程;(2)若以為直徑的圓過坐標原點,求的值.21.(12分)已知拋物線C:x2=2py的焦點為F,點N(t,1)在拋物線C上,且|NF|=.(1)求拋物線C的方程;(2)過點M(0,1)的直線l交拋物線C于不同的兩點A,B,設O為坐標原點,直線OA,OB的斜率分別為k1,k2,求證:k1k2為定值.22.(10分)已知圓:,定點,Q為圓上的一動點,點P在半徑CQ上,且,設點P的軌跡為曲線E.(1)求曲線E的方程;(2)過點的直線交曲線E于A,B兩點,過點H與AB垂直的直線與x軸交于點N,當取最大值時,求直線AB的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.2、C【解析】分析得出,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因為,,則,,因為平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則點、、、,,,,因此,異面直線與所成的角為.故選:C.3、D【解析】利用幾何概型的概率公式,轉化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D4、C【解析】建立空間直角坐標系,利用點面距公式求得正確答案.【詳解】設分別是的中點,根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點建立如圖所示空間直角坐標系,,,.設平面的法向量為,則,故可設,所以點到平面的距離為.故選:C5、A【解析】利用平行線間距離公式進行求解即可.【詳解】因為兩條平行線與之間的距離是2,所以,或,故選:A6、B【解析】在出矩形中,設,得到,結合基本不等式,即可求解【詳解】如圖所示,在矩形中,設,則,根據(jù)題意,可得矩形圍欄總長為因為,可得,當且僅當時,即時,等號成立,即圍欄總長最小需要米.故選:B.7、D【解析】根據(jù)題意,解不等式求出集合,由,得,進而求出,從而可求出集合,最后根據(jù)并集的運算即可得出答案.【詳解】解:由題可知,,而,即,解得:,又由于,得,因為,則,所以,解得:,所以,所以.故選:D.【點睛】本題考查集合的交集的定義和并集運算,屬于基礎題.8、C【解析】先由cosA的值求出,進而求出,用正弦定理求出b的值.【詳解】因為cosA=,所以,所以由正弦定理:,得:.故選:C9、A【解析】根據(jù)(為弦長,為圓半徑,為圓心到直線的距離),求解出的關系式,結合求解出離心率的值.【詳解】取的一條漸近線,因為(為弦長,為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點睛】關鍵點點睛:解答本題的關鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長之間的關系.10、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B11、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.12、C【解析】由同角三角函數(shù)關系可得,進而直接利用兩角和的余弦展開求解即可.【詳解】∵,是第二象限角,∴,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本不等式性質(zhì)可得的最小值,由恒成立可得即可求出實數(shù)的取值范圍.【詳解】解:因為正數(shù),滿足,所以,當且僅當時,即時取等號因為恒成立,所以,解得.故實數(shù)的取值范圍是.故答案填:.【點睛】熟練掌握基本不等式的性質(zhì)和正確轉化恒成立問題是解題的關鍵.14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、【解析】由直線的方程求出直線的斜率以及,兩點坐標,進而可得線段的垂直平分線的斜率以及線段的中點坐標,利用點斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點坐標為,所以線段的垂直平分線的方程為,整理得.故答案為:.16、4【解析】設,寫出、的坐標,利用向量數(shù)量積的坐標表示有,根據(jù)橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當時,.故答案為:【點睛】關鍵點點睛:利用向量數(shù)量積的坐標表示及橢圓的有界性求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)6【解析】(1)由橢圓的定義求解(2)設直線方程后與橢圓方程聯(lián)立,由韋達定理表示弦長,將面積轉化為函數(shù)后求求解【小問1詳解】由題意可得,所以動點P的軌跡是以M,N為焦點,長軸長為4的橢圓,即曲線C的方程為:;【小問2詳解】由題意可設的方程為,聯(lián)立方程得,設,,則由根與系數(shù)關系有,所以,根據(jù)橢圓的對稱性可得,與的距離即為點M到直線的距離,為,所以四邊形ABDE面積為,令得,由對勾函數(shù)性質(zhì)可知:當且僅當,即時,四邊形ABDE面積取得最大值為6.18、(1)拋物線的方程為,焦點坐標為(2)存在,且【解析】(1)根據(jù)點坐標求得,進而求得拋物線的方程和焦點的坐標.(2)設,根據(jù)列方程,化簡求得的坐標.【小問1詳解】將代入得,所以拋物線的方程為,焦點坐標為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準線,設,,即,所以.即存在點使.19、(1);(2);(3)詳見解析.【解析】(1)根據(jù)拋物線的準線方程求解;(2)由直線方程與拋物線方程聯(lián)立,利用弦長公式求解;(3)結合韋達定理,利用數(shù)量積運算證明;【小問1詳解】解:因為拋物線的準線方程是,所以,解得,所以拋物線的方程是;【小問2詳解】由,得,設,則,所以;【小問3詳解】因為,,,所以,即.20、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點與雙曲線的焦點重合,得到,進而可求出結果;(2)先由題意,得直線的斜率存在,設直線的方程為,聯(lián)立直線與橢圓方程,設,根據(jù)韋達定理,得到,,再由以為直徑的圓過坐標原點,得到,進而可求出結果.詳解】(1)由題意知,∴,即,又雙曲線的焦點坐標為,橢圓的短軸端點與雙曲線的焦點重合,所以,∴,故橢圓的方程為.(2)解:由題意知直線的斜率存在,設直線的方程為由得:由得:設,則,,∴因為以為直徑的圓過坐標原點,所以,.滿足條件故.【點睛】本題主要考查橢圓的方程,以及橢圓的應用,熟記橢圓的標準方程,以及橢圓的簡單性質(zhì)即可,解決此類問題時,通常需要聯(lián)立直線與橢圓方程,結合韋達定理、判別式等求解,屬于常考題型.21、(1)x2=2y;(2)證明見解析【解析】(1)利用拋物線的定義進行求解即可;(2)設直線l的直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關系、斜率公式進行證明即可.【小問1詳解】∵點N(t,1)在拋物線C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴拋物線C的方程為x2=2y;【小問2詳解】依題意,設直線l:y=kx+1,A(x1,y1),B(x2,y2),聯(lián)立,得x2﹣2kx﹣2=0.則x1x2=﹣2,∴.故k1k2為定值.【點睛】關鍵點睛:利用拋物線的定義是解題的關鍵.22、(1)(2)或【解析】(1)結合已知條件可得到點P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結合已知條件設出直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 黑龍江省綏化市望奎縣第五中學(五四學制)2024-2025學年九年級上學期期中數(shù)學試卷(含答案)
- 贛南師范大學《環(huán)境監(jiān)測》2022-2023學年第一學期期末試卷
- 阜陽師范大學《中小學音樂教材教法》2022-2023學年第一學期期末試卷
- 阜陽師范大學《經(jīng)濟數(shù)學一》2021-2022學年第一學期期末試卷
- 阜陽師范大學《表演基礎理論》2021-2022學年第一學期期末試卷
- 無錫市2024-2025學年五年級上學期11月期中調(diào)研數(shù)學試卷二(有答案)
- 福建師范大學協(xié)和學院《外貿(mào)單證實務模擬操作》2022-2023學年第一學期期末試卷
- 福建師范大學《中國地理》2022-2023學年第一學期期末試卷
- 福建師范大學《教育學含教師職業(yè)道德》2021-2022學年第一學期期末試卷
- 福建師范大學《歌曲寫作》2022-2023學年第一學期期末試卷
- 初中踐行勞動教育做新時代好少年主題班會課件
- 人教版四年級數(shù)學上冊知識歸納期末復習
- 小學三年級數(shù)學口算 3位乘或除1位第1-10篇
- 【歷史】七年級上冊期中復習(1-15課)(復習課件) 2024-2025學年七年級歷史上冊(統(tǒng)編版2024)
- 申請失業(yè)保險金承諾書
- 《體育保健學》課件-第三章 運動性病癥
- 分頻器的簡易計算與制作
- 3%23連鑄方坯生產(chǎn)中節(jié)距履帶鋼工藝研究
- 風溫肺熱病中醫(yī)臨床路徑分析報告
- 廣東建筑省統(tǒng)表驗收報告
- [其他語言學習]《新編阿拉伯語》第三冊第3課學習筆記
評論
0/150
提交評論