版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆浙江省武義三中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個(gè)小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側(cè)面積為2.設(shè)不等式組,表示的平面區(qū)域?yàn)椋趨^(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.3.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.由曲線圍成的封閉圖形的面積為()A. B. C. D.5.設(shè)集合、是全集的兩個(gè)子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,,則()A. B. C. D.7.若,則的虛部是()A. B. C. D.8.某幾何體的三視圖如圖所示,三視圖是腰長(zhǎng)為1的等腰直角三角形和邊長(zhǎng)為1的正方形,則該幾何體中最長(zhǎng)的棱長(zhǎng)為().A. B. C.1 D.9.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.410.函數(shù)在上的圖象大致為()A. B.C. D.11.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.12.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為_(kāi)_.14.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi).15.如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個(gè)三角形養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點(diǎn),到直線,的距離分別為8百米、1百米,則觀察點(diǎn)到點(diǎn)、距離之和的最小值為_(kāi)_____________百米.16.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.18.(12分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,,若,求PH與平面PBC所成角的正弦值.19.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.20.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說(shuō)明理由;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)在何處時(shí),直線與平面所成角最大?并求最大角的正弦值.21.(12分)已知函數(shù),將的圖象向左移個(gè)單位,得到函數(shù)的圖象.(1)若,求的單調(diào)區(qū)間;(2)若,的一條對(duì)稱軸是,求在的值域.22.(10分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計(jì)算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點(diǎn),底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側(cè)面積為.故正確的為C.故選:C.【點(diǎn)睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計(jì)算問(wèn)題,屬于中檔題.2、A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡(jiǎn)單題.3、B【解析】
復(fù)數(shù),在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】
先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.5、C【解析】
作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時(shí).故選:C.【點(diǎn)睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
原式由正弦定理化簡(jiǎn)得,由于,可求的值.【詳解】解:由及正弦定理得.因?yàn)椋源肷鲜交?jiǎn)得.由于,所以.又,故.故選:C.【點(diǎn)睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,屬于中檔題.7、D【解析】
通過(guò)復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8、B【解析】
首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長(zhǎng).【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長(zhǎng)的棱長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題.9、D【解析】可以是共4個(gè),選D.10、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】
根據(jù)題意,知當(dāng)時(shí),,由對(duì)稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對(duì)稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對(duì)稱性的應(yīng)用,考查計(jì)算能力.12、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)函數(shù)求導(dǎo)后,代入切點(diǎn)的橫坐標(biāo)得到切線斜率,然后根據(jù)直線方程的點(diǎn)斜式,即可寫出切線方程.【詳解】因?yàn)?,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查過(guò)曲線上一點(diǎn)的切線方程的求法,屬基礎(chǔ)題.14、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.15、【解析】
建系,將直線用方程表示出來(lái),再用參數(shù)表示出線段的長(zhǎng)度,最后利用導(dǎo)數(shù)來(lái)求函數(shù)最小值.【詳解】以為原點(diǎn),所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,,則,則,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),,則單調(diào)遞增,所以當(dāng)時(shí),最短,此時(shí).故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的實(shí)際應(yīng)用,屬于中檔題.16、【解析】
結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.18、(1)見(jiàn)解析;(2)【解析】
(1)記,連結(jié),推導(dǎo)出,平面,由此能證明平面平面;(2)推導(dǎo)出,平面,連結(jié),由題意得為的重心,,從而平面平面,進(jìn)而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結(jié),中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結(jié),由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點(diǎn)睛】本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.19、(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.20、(1)為中點(diǎn),理由見(jiàn)解析;(2)當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點(diǎn),可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點(diǎn),證明如下:分別為中點(diǎn),又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時(shí),等號(hào)成立即當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【點(diǎn)睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運(yùn)算求解能力.21、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)由題意利用三角函數(shù)圖象變換規(guī)律求得的解析式,然后利用余弦函數(shù)的單調(diào)性,得出結(jié)論;(2)由題意利用余弦函數(shù)的圖象的對(duì)稱性求得,再根據(jù)余弦函數(shù)的定義域和值域,得出結(jié)論.【詳解】由題意得(1)向左平移個(gè)單位得到,增區(qū)間:解不等式,解得,減區(qū)間:解不等式,解得.綜上可得,的單調(diào)增區(qū)間為,減區(qū)間為;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年設(shè)備監(jiān)理師考試題庫(kù)含答案【預(yù)熱題】
- 家政服務(wù)衛(wèi)生安全規(guī)定
- 花藝圓形花束課程設(shè)計(jì)
- 電子行業(yè)產(chǎn)品知識(shí)培訓(xùn)總結(jié)
- 項(xiàng)目立項(xiàng)申請(qǐng)計(jì)劃
- 文化藝術(shù)行業(yè)市場(chǎng)總結(jié)
- 銷售業(yè)績(jī)?cè)u(píng)估方法培訓(xùn)
- 青少年法治教育工作安排計(jì)劃
- 出版合同范本(2篇)
- 2024施工安全生產(chǎn)承諾書范文(34篇)
- 強(qiáng)基計(jì)劃模擬卷化學(xué)
- 工程項(xiàng)目施工方案比選
- 盾構(gòu)始發(fā)施工技術(shù)要點(diǎn)PPT(44頁(yè))
- 甲烷(沼氣)的理化性質(zhì)及危險(xiǎn)特性表
- 某鋼鐵有限責(zé)任公司管理專案報(bào)告書---提升配電系統(tǒng)管理水平降低變配電裝置事故率
- 促銷費(fèi)用管理辦法15
- 《三國(guó)演義》整本書閱讀任務(wù)單
- GB 13296-2013 鍋爐、熱交換器用不銹鋼無(wú)縫鋼管(高清版)
- 企業(yè)信用管理制度
- 中醫(yī)院中藥的飲片處方用名與調(diào)劑給付規(guī)定
- 鉆孔灌注樁及后注漿施工方案施工方案
評(píng)論
0/150
提交評(píng)論