版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省菏澤市東明縣第一中學2025屆高一數(shù)學第一學期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在正六棱柱任意兩個頂點的連線中與棱AB平行的條數(shù)為()A.2 B.3C.4 D.52.若a>b>1,0<c<1,則下列式子中不正確的是()A. B.C. D.3.已知集合A. B.C. D.4.某流行病調(diào)查中心的疾控人員針對該地區(qū)某類只在人與人之間相互傳染的疾病,通過現(xiàn)場調(diào)查與傳染源傳播途徑有關的蛛絲馬跡,根據(jù)傳播鏈及相關數(shù)據(jù),建立了與傳染源相關確診病例人數(shù)與傳染源感染后至隔離前時長t(單位:天)的模型:.已知甲傳染源感染后至隔離前時長為5天,與之相關確診病例人數(shù)為8;乙傳染源感染后至隔離前時長為8天,與之相關確診病例人數(shù)為20.若某傳染源感染后至隔離前時長為兩周,則與之相關確診病例人數(shù)約為()A.44 B.48C.80 D.1255.命題“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”6.直線與圓相切,則的值為()A. B.C. D.7.已知為三角形的內(nèi)角,且,則()A. B.C. D.8.函數(shù)的零點所在區(qū)間為:()A. B.C. D.9.設,,定義運算“△”和“”如下:,.若正數(shù),,,滿足,,則()A.△,△ B.,C.△, D.,△10.已知全集,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知命題“?x∈R,e?x≥a”12.若冪函數(shù)在區(qū)間上是減函數(shù),則整數(shù)________13.已知直線與兩坐標軸所圍成的三角形的面積為1,則實數(shù)值是____________14.__________15.某房屋開發(fā)公司用14400萬元購得一塊土地,該地可以建造每層的樓房,樓房的總建筑面積(即各層面積之和)每平方米平均建筑費用與建筑高度有關,樓房每升高一層整幢樓房每平方米建筑費用提高640元.已知建筑5層樓房時,每平方米建筑費用為8000元,公司打算造一幢高于5層的樓房,為了使該樓房每平米的平均綜合費用最低(綜合費用是建筑費用與購地費用之和),公司應把樓層建成____________層,此時,該樓房每平方米的平均綜合費用最低為____________元16.我國古代數(shù)學名著《九章算術》中相當于給出了已知球的體積V,求其直徑d的一個近似公式.規(guī)定:“一個近似數(shù)與它準確數(shù)的差的絕對值叫這個近似數(shù)的絕對誤差.”如果一個球體的體積為,那么用這個公式所求的直徑d結果的絕對誤差是___________.(參考數(shù)據(jù):,結果精確到0.01)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.計算下列各式(式中字母均是正數(shù)).(1)(2)18.已知A(1,1)和圓C:(x+2)2+(y﹣2)2=1,一束光線從A發(fā)出,經(jīng)x軸反射后到達圓C(1)求光線所走過的最短路徑長;(2)若P為圓C上任意一點,求x2+y2﹣2x﹣4y的最大值和最小值19.(1)用籬笆圍一個面積為的矩形菜園,當這個矩形的邊長為多少時,所用籬笆最短?最短籬笆的長度是多少?(2)用一段長為的籬笆圍成一個矩形菜園,當這個矩形的邊長為多少時,菜園的面積最大?最大面積是多少?20.設集合存在正實數(shù),使得定義域內(nèi)任意x都有.(1)若,證明;(2)若,且,求實數(shù)a的取值范圍;(3)若,,且、求函數(shù)的最小值.21.如圖,在平面直角坐標系中,角,的始邊均為軸正半軸,終邊分別與圓交于,兩點,若,,且點的坐標為(1)若,求實數(shù)的值;(2)若,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】作出幾何體的直觀圖觀察即可.【詳解】解:連接CF,C1F1,與棱AB平行的有,共有5條,故選:D.2、D【解析】利用對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的單調(diào)性即可判斷出正誤.【詳解】解:,,,A正確;是減函數(shù),,B正確;為增函數(shù),,C正確.是減函數(shù),,D錯誤.故選.【點睛】本題考查了對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.3、D【解析】由已知,所以考點:集合的運算4、D【解析】根據(jù)求得,由此求得的值.【詳解】依題意得,,,所以.故若某傳染源感染后至隔離前時長為兩周,則相關確診病例人數(shù)約為125.故選:D5、D【解析】根據(jù)特稱命題的否定是全稱命題,即可得出命題的否定形式【詳解】因為特稱命題的否定是全稱命題,所以命題“,使”的否定形式為:,使故選:D6、D【解析】由圓心到直線的距離等于半徑可得【詳解】由題意圓標準方程為,圓心坐標為,半徑為1,所以,解得故選:D7、A【解析】根據(jù)同角三角函數(shù)的基本關系,運用“弦化切”求解即可.【詳解】計算得,所以,,從而可計算的,,,選項A正確,選項BCD錯誤.故選:A.8、C【解析】利用函數(shù)的單調(diào)性及零點存在定理即得.【詳解】因為,所以函數(shù)單調(diào)遞減,,∴函數(shù)的零點所在區(qū)間為.故選:C.9、D【解析】根據(jù)所給運算,取特殊值檢驗即可排除ACB,得到答案.【詳解】令滿足條件,則,可排除A,C;令滿足。則,排除B;故選:D10、C【解析】根據(jù)補集的定義可得結果.【詳解】因為全集,,所以根據(jù)補集的定義得,故選C.【點睛】若集合的元素已知,則求集合的交集、并集、補集時,可根據(jù)交集、并集、補集的定義求解二、填空題:本大題共6小題,每小題5分,共30分。11、a≤0【解析】根據(jù)?x∈R,e?x≥a成立,【詳解】因為?x∈R,e所以e?則a≤0,故答案為:a≤012、2【解析】由題意可得,求出的取值范圍,從而可出整數(shù)的值【詳解】因為冪函數(shù)在區(qū)間上是減函數(shù),所以,解得,因為,所以,故答案為:213、1或-1【解析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.14、2【解析】考點:對數(shù)與指數(shù)的運算性質(zhì)15、①.15②.24000【解析】設公司應該把樓建成層,可知每平方米的購地費用,已知建筑5層樓房時,每平方米建筑費用為8000元,從中可得出建層的每平方米的建筑費用,然后列出式子求得其最小值,從而可求得答案【詳解】設公司應該把樓建成層,則由題意得每平方米購地費用為(元),每平方米的建筑費用為(元),所以每平方米的平均綜合費用為,當且僅當,即時取等號,所以公司應把樓層建成15層,此時,該樓房每平方米的平均綜合費用最低為24000元,故答案為:15,2400016、05【解析】根據(jù)球的體積公式可求得準確直徑,由近似公式可得近似直徑,然后由絕對誤差的定義即可求解.【詳解】解:由題意,,所以,所以直徑d結果的絕對誤差是,故答案為:0.05.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)2;(2).【解析】(1)利用對數(shù)的運算性質(zhì)即得;(2)利用指數(shù)冪的運算法則運算即得.【小問1詳解】;【小問2詳解】.18、(1);(2)最大值為11,最小值為﹣1【解析】(1)點關于x軸的對稱點在反射光線上,當反射光線從點經(jīng)軸反射到圓周的路程最短,最短為;(2)將式子化簡得到,轉化為點點距,進而轉化為圓心到的距離,加減半徑,即可求得最值.【詳解】(1)關于x軸的對稱點為,由圓C:(x+2)2+(y﹣2)2=1得圓心坐標為C(﹣2,2),∴,即光線所走過的最短路徑長為;(2)x2+y2﹣2x﹣4y=(x﹣1)2+(y﹣2)2﹣5(x﹣1)2+(y﹣2)2表示圓C上一點P(x,y)到點(1,2)的距離的平方,由題意,得,因此,x2+y2﹣2x﹣4y的最大值為11,最小值為﹣1【點睛】本題考查最短路徑問題,以及圓外一點到圓上一點的距離的最值問題,屬于基礎題;求最短路徑時作對稱點,由兩點之間線段最短的原理確定長度,將圓外一點距離的最值轉化為點到圓心的距離和半徑之間的關系.19、(1)當這個矩形菜園是邊長為的正方形時,最短籬笆的長度為;(2)當這個矩形菜園是邊長為的正方形時,最大面積是.【解析】設矩形菜園的相鄰兩條邊的長分別為、,籬笆的長度為.(1)由題意得出,利用基本不等式可求出矩形周長的最小值,由等號成立的條件可得出矩形的邊長,從而可得出結論;(2)由題意得出,利用基本不等式可求出矩形面積的最大值,由等號成立的條件可得出矩形的邊長,從而可得出結論.【詳解】設矩形菜園的相鄰兩條邊的長分別為、,籬笆的長度為.(1)由已知得,由,可得,所以,當且僅當時,上式等號成立.因此,當這個矩形菜園是邊長為的正方形時,所用籬笆最短,最短籬笆的長度為;(2)由已知得,則,矩形菜園的面積為.由,可得,當且僅當時,上式等號成立.因此,當這個矩形菜園是邊長為的正方形時,菜園的面積最大,最大面積是.【點睛】本題考查基本不等式的應用,在運用基本不等式求最值時,充分利用“積定和最小,和定積最大”的思想求解,同時也要注意等號成立的條件,考查計算能力,屬于基礎題.20、(1)證明見解析;(2);(3).【解析】(1)利用判斷(2),化簡,通過判別式小于0,求出的范圍即可(3)由,推出,得到對任意都成立,然后分離變量,通過當時,當時,分別求解最小值即可【詳解】(1),(2)由,故;(3)由,即對任意都成立當時,;當時,;當時,綜上:【點睛】思路點睛:本題考查函數(shù)新定義,重點是理解新定義的意義,本題第三問的關鍵是代入定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度茶葉科研與技術推廣服務合同4篇
- 2025年度茶葉品牌授權經(jīng)營合同模板4篇
- 2025年度產(chǎn)業(yè)園區(qū)配套服務場承包經(jīng)營合同樣本4篇
- 專業(yè)廣告策劃與推廣服務協(xié)議樣本版A版
- 2025年度智能家居系統(tǒng)產(chǎn)品試用體驗合同4篇
- 專業(yè)拓展訓練服務協(xié)議范例版
- 專業(yè)保安人員派遣合同合同2024年版版
- 專業(yè)儲油罐租賃服務協(xié)議示例版
- 2024年04月恒豐銀行合肥分行2024年社會招考筆試歷年參考題庫附帶答案詳解
- 2025年度體育場館場地租賃安全與賽事運營管理合同4篇
- 聲學基礎專題知識專業(yè)知識講座課件
- 物理期末考試成績分析總結
- 屋頂花園 施工方案
- 校園安全培訓課件
- 化工廠施工安全質(zhì)量冬季施工措施
- 移動商務內(nèi)容運營(吳洪貴)項目五 運營效果監(jiān)測
- 2023-2024學年廣西壯族自治區(qū)玉林市小學語文一年級期末評估測試題詳細參考答案解析
- 青少年自殺自傷行為預防與干預專家講座
- 比較思想政治教育學
- 職業(yè)技能大賽:電工(五級)理論知識考核要素細目表(征求意見稿)
- 阿特拉斯擰緊工具維修培訓
評論
0/150
提交評論