2025屆浙江省湖州市長興縣德清縣安吉縣高一上數(shù)學期末達標檢測試題含解析_第1頁
2025屆浙江省湖州市長興縣德清縣安吉縣高一上數(shù)學期末達標檢測試題含解析_第2頁
2025屆浙江省湖州市長興縣德清縣安吉縣高一上數(shù)學期末達標檢測試題含解析_第3頁
2025屆浙江省湖州市長興縣德清縣安吉縣高一上數(shù)學期末達標檢測試題含解析_第4頁
2025屆浙江省湖州市長興縣德清縣安吉縣高一上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆浙江省湖州市長興縣德清縣安吉縣高一上數(shù)學期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則下列不等式一定成立的是()A. B.C. D.2.已知,都是正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.設(shè)全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,64.如圖,某池塘里浮萍的面積(單位:)與時間t(單位:月)的關(guān)系為,關(guān)于下列說法不正確的是()A.浮萍每月的增長率為2B.浮萍每月增加的面積都相等C.第4個月時,浮萍面積超過D.若浮萍蔓延到所經(jīng)過的時間分別是,、,則5.繆天榮,浙江人,著名眼科專家、我國眼視光學的開拓者.上世紀年代,我國使用“國際標準視力表”檢測視力,采用“小數(shù)記錄法”記錄視力數(shù)據(jù),繆天榮發(fā)現(xiàn)其中存在不少缺陷.經(jīng)過年苦心研究,年,他成功研制出“對數(shù)視力表”及“分記錄法”.這是一種既符合視力生理又便于統(tǒng)計和計算的視力檢測系統(tǒng),使中國的眼視光學研究站在了世界的巔峰.“分記錄法”將視力和視角(單位:)設(shè)定為對數(shù)關(guān)系:.如圖,標準對數(shù)視力表中最大視標的視角為,則對應的視力為.若小明能看清的某行視標的大小是最大視標的(相應的視角為),取,則其視力用“分記錄法”記錄()A. B.C. D.6.已知函數(shù),則()A.5 B.2C.0 D.17.如圖,已知的直觀圖是一個直角邊長是1的等腰直角三角形,那么的面積是A. B.C.1 D.8.下列說法不正確的是A.方程有實根函數(shù)有零點B.有兩個不同的實根C.函數(shù)在上滿足,則在內(nèi)有零點D.單調(diào)函數(shù)若有零點,至多有一個9.設(shè)θ為銳角,,則cosθ=()A. B.C. D.10.設(shè),則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=AB,則下列結(jié)論正確的是_____.(填序號)①PB⊥AD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sin∠PDA12.已知函數(shù)在區(qū)間上是增函數(shù),則下列結(jié)論正確是__________(將所有符合題意的序號填在橫線上)①函數(shù)在區(qū)間上是增函數(shù);②滿足條件的正整數(shù)的最大值為3;③.13.若函數(shù)的定義域為,則函數(shù)的定義域為______14.已知某扇形的周長是,面積為,則該扇形的圓心角的弧度數(shù)是______.15.函數(shù)的圖象恒過定點,點在冪函數(shù)的圖象上,則=____________16.某房屋開發(fā)公司用14400萬元購得一塊土地,該地可以建造每層的樓房,樓房的總建筑面積(即各層面積之和)每平方米平均建筑費用與建筑高度有關(guān),樓房每升高一層整幢樓房每平方米建筑費用提高640元.已知建筑5層樓房時,每平方米建筑費用為8000元,公司打算造一幢高于5層的樓房,為了使該樓房每平米的平均綜合費用最低(綜合費用是建筑費用與購地費用之和),公司應把樓層建成____________層,此時,該樓房每平方米的平均綜合費用最低為____________元三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.記不等式的解集為A,不等式的解集為B.(1)當時,求;(2)若,求實數(shù)a的取值范圍.18.已知函數(shù)(且)的圖象過點.(1)求函數(shù)的解析式;(2)解不等式.19.如圖,已知是半徑為圓心角為的扇形,是該扇形弧上的動點,是扇形的內(nèi)接矩形,記為.(1)若的周長為,求的值;(2)求的最大值,并求此時的值.20.,不等式的解集為(1)求實數(shù)b,c的值;(2)時,求的值域21.已知函數(shù),其中.(1)求函數(shù)的定義域;(2)若函數(shù)的最大值為2.求a的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】對A,B,C,利用特殊值即可判斷,對D,利用不等式的性質(zhì)即可判斷.【詳解】解:對A,令,,此時滿足,但,故A錯;對B,令,,此時滿足,但,故B錯;對C,若,,則,故C錯;對D,,則,故D正確.故選:D.2、B【解析】利用特殊值法、基本不等式結(jié)合充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】充分性:由于,,且,取,則,充分性不成立;必要性:由于,,且,解得,必要性成立.所以,當,時,“”“”必要不充分條件.故選:B.3、B【解析】由補集的定義分析可得?U【詳解】根據(jù)題意,全集U=1,2,3,4,5,6,7,8,9,而A=則?U故選:B4、B【解析】先利用特殊點求出函數(shù)解析式為,再利用指數(shù)函數(shù)的性質(zhì)即可判斷出正誤【詳解】解:圖象可知,函數(shù)過點,,函數(shù)解析式為,浮萍每月的增長率為,故選項A正確,函數(shù)是指數(shù)函數(shù),是曲線型函數(shù),浮萍每月增加的面積不相等,故選項B錯誤,當時,,故選項C正確,對于D選項,,,,,又,,故選項D正確,故選:B5、C【解析】將代入,求出的值,即可得解.【詳解】將代入函數(shù)解析式可得.故選:C.6、C【解析】由分段函數(shù),選擇計算【詳解】由題意可得.故選:C.【點睛】本題考查分段函數(shù)的求值,屬于簡單題7、D【解析】根據(jù)斜二測畫法的基本原理,將平面直觀圖與還原為原幾何圖形,利用三角形面積公式可得結(jié)果.【詳解】平面直觀圖與其原圖形如圖,直觀圖是直角邊長為的等腰直角三角形,還原回原圖形后,邊還原為長度不變,仍為,直觀圖中的在原圖形中還原為長度,且長度為,所以原圖形的面積為,故選D.【點睛】本題主要考查直觀圖還原幾何圖形,屬于簡單題.利用斜二測畫法作直觀圖,主要注意兩點:一是與軸平行的線段仍然與與軸平行且相等;二是與軸平行的線段仍然與軸平行且長度減半.8、C【解析】A選項,根據(jù)函數(shù)零點定義進行判斷;B選項,由根的判別式進行求解;C選項,由零點存在性定理及舉出反例進行說明;D選項,由函數(shù)單調(diào)性定義及零點存在性定理進行判斷.【詳解】A.根據(jù)函數(shù)零點的定義可知:方程有實根?函數(shù)有零點,∴A正確B.方程對應判別式,∴有兩個不同實根,∴B正確C.根據(jù)根的存在性定理可知,函數(shù)必須是連續(xù)函數(shù),否則不一定成立,比如函數(shù),滿足條件,但在內(nèi)沒有零點,∴C錯誤D.若函數(shù)為單調(diào)函數(shù),則根據(jù)函數(shù)單調(diào)性的定義和函數(shù)零點的定義可知,函數(shù)和x軸至多有一個交點,∴單調(diào)函數(shù)若有零點,則至多有一個,∴D正確故選:C9、D【解析】為銳角,故選10、B【解析】函數(shù)在上單調(diào)遞減,所以,函數(shù)在上單調(diào)遞減,所以,所以,答案為B考點:比較大小二、填空題:本大題共6小題,每小題5分,共30分。11、④【解析】由題意,分別根據(jù)線面位置關(guān)系的判定定理和性質(zhì)定理,逐項判定,即可得到答案.【詳解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD與AB成60°,∴①不成立,過A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正確;BC與AE是相交直線,所以BC一定不與平面PAE平行,所以③不正確;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正確;故答案為:④【點睛】本題考查線面位置關(guān)系判定與證明,考查線線角,屬于基礎(chǔ)題.熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.12、①②③【解析】!由題函數(shù)在區(qū)間上是增函數(shù),則由可得為奇函數(shù),則①函數(shù)在區(qū)間(,0)上是增函數(shù),正確;由可得,即有滿足條件的正整數(shù)的最大值為3,故②正確;由于由題意可得對稱軸,即有.,故③正確故答案為①②③【點睛】本題考查正弦函數(shù)的圖象和性質(zhì),重點是對稱性和單調(diào)性的運用,考查運算能力,屬于中檔題13、【解析】利用的定義域,求出的值域,再求x的取值范圍.【詳解】的定義域為即的定義域為故答案為:14、2【解析】由扇形的周長和面積,可求出扇形的半徑及弧長,進而可求出該扇形的圓心角.【詳解】設(shè)扇形的半徑為,所對弧長為,則有,解得,故.故答案為:2.【點睛】本題考查扇形面積公式、弧長公式的應用,考查學生的計算求解能力,屬于基礎(chǔ)題.15、【解析】因為函數(shù)圖象恒過定點,則可之令2x-3=1,x=2,函數(shù)值為4,故過定點(2,4),然后根據(jù)且點在冪函數(shù)的圖象上,設(shè),故可知=9,故答案為9.考點:對數(shù)函數(shù)點評:本題考查了對數(shù)函數(shù)圖象過定點(1,0),即令真數(shù)為1求對應的x和y,則是所求函數(shù)過定點的坐標16、①.15②.24000【解析】設(shè)公司應該把樓建成層,可知每平方米的購地費用,已知建筑5層樓房時,每平方米建筑費用為8000元,從中可得出建層的每平方米的建筑費用,然后列出式子求得其最小值,從而可求得答案【詳解】設(shè)公司應該把樓建成層,則由題意得每平方米購地費用為(元),每平方米的建筑費用為(元),所以每平方米的平均綜合費用為,當且僅當,即時取等號,所以公司應把樓層建成15層,此時,該樓房每平方米的平均綜合費用最低為24000元,故答案為:15,24000三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)分別求出集合,再求并集即可.(2)分別求出集合和的補集,它們的交集不為空集,列出不等式求解.【詳解】(1)當時,的解為或(2)a的取值范圍為18、(1)(2)【解析】(1)把已知點的坐標代入求解即可;(2)直接利用函數(shù)單調(diào)性即可求出結(jié)論,注意真數(shù)大于0的這一隱含條件【小問1詳解】因為函數(shù)(且)的圖象過點.,所以,即;【小問2詳解】因為單調(diào)遞增,所以,即不等式的解集是19、(1);(2),.【解析】(1)根據(jù)周長即可求得,以及;將目標式進行轉(zhuǎn)化即可求得;(2)用表示出,將其轉(zhuǎn)化為關(guān)于的三角函數(shù),求該三角函數(shù)的最大值即可求得結(jié)果.【詳解】(1),,則若的周長為,則,,平方得,即,解得(舍)或.則.(2)中,,,在中,,,則因為,,當,即時,有最大值.【點睛】本題考查已知正切值求齊次式的值,以及幾何圖形中構(gòu)造三角函數(shù),并求三角函數(shù)最值的問題,涉及倍角公式和輔助角公式的利用,屬綜合中檔題.20、(1)(2)【解析】(1)由題意,1和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論