廈門灌口中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
廈門灌口中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
廈門灌口中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
廈門灌口中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
廈門灌口中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廈門灌口中學(xué)2025屆高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)的圖象與軸有交點,且值域,則的取值范圍是()A. B.C. D.2.圓與圓有()條公切線A.0 B.2C.3 D.43.已知,,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.若,的終邊(均不在y軸上)關(guān)于x軸對稱,則()A. B.C. D.5.奇函數(shù)在內(nèi)單調(diào)遞減且,則不等式的解集為()A. B.C. D.6.已知,且,則的最小值為()A.3 B.4C.6 D.97.下列關(guān)系中,正確的是()A. B.C D.8.已知關(guān)于的不等式的解集是,則的值是()A. B.2C.22 D.9.設(shè)則()A. B.C. D.10.已知為鈍角,且,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.經(jīng)過原點并且與直線相切于點的圓的標準方程是__________12.已知點在角的終邊上,則___________;13.在平面直角坐標系中,動點P到兩條直線與的距離之和等于2,則點P到坐標原點的距離的最小值為_________.14.下列說法中,所有正確說法的序號是_____終邊落在軸上的角的集合是;

函數(shù)圖象與軸的一個交點是;函數(shù)在第一象限是增函數(shù);若,則15.已知函數(shù)f(x)=x2,若存在t∈R,對任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,則m的最大值為______16.我國采用的“密位制”是6000密位制,即將一個圓周分為6000等份,每一個等份是一個密位,那么120密位等于______rad三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為上奇函數(shù)(1)求實數(shù)的值;(2)若不等式對任意恒成立,求實數(shù)的最小值18.如圖所示,矩形所在平面,分別是的中點.(1)求證:平面.(2)19.已知函數(shù)其中.(1)當a=0時,求f(x)的值域;(2)若f(x)有兩個零點,求a的取值范圍.20.已知的數(shù)(1)有解時,求實數(shù)的取值范圍;(2)當時,總有,求定的取值范圍21.計算下列式子的值:(1);(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由函數(shù)有零點,可求得,由函數(shù)的值域可求得,綜合二者即可得到的取值范圍.【詳解】定義在上的函數(shù),則,由函數(shù)有零點,所以,解得;由函數(shù)的值域,所以,解得;綜上,的取值范圍是故選:D2、B【解析】由題意可知圓的圓心為,半徑為,圓的圓心為半徑為∵兩圓的圓心距∴∴兩圓相交,則共有2條公切線故選B3、A【解析】說明由可得得到,通過特例說明無法從得到,從而得到是的充分不必要條件.【詳解】由,可得,由,即,,解得或.于是,由能推出,反之不成立.所以是充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,屬于簡單題.4、A【解析】因為,的終邊(均不在軸上)關(guān)于軸對稱,則,,然后利用誘導(dǎo)公式對應(yīng)各個選項逐個判斷即可求解【詳解】因為,的終邊(均不在軸上)關(guān)于軸對稱,則,,選項,故正確,選項,故錯誤,選項,故錯誤,選項,故錯誤,故選:5、A【解析】由已知可作出函數(shù)的大致圖象,結(jié)合圖象可得到答案.【詳解】因為函數(shù)在上單調(diào)遞減,,所以當時,,當,,又因為是奇函數(shù),圖象關(guān)于原點對稱,所以在上單調(diào)遞減,,所以當時,,當時,,大致圖象如下,由得或,解得,或,或,故選:A.【點睛】本題考查了抽象函數(shù)的單調(diào)性和奇偶性,解題的關(guān)鍵點是由題意分析出的大致圖象,考查了學(xué)生分析問題、解決問題的能力.6、A【解析】將變形為,再將變形為,整理后利用基本不等式可求最小值.【詳解】因為,故,故,當且僅當時等號成立,故的最小值為3.故選:A.【點睛】方法點睛:應(yīng)用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時要關(guān)注取等條件的驗證.7、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B8、C【解析】轉(zhuǎn)化為一元二次方程兩根問題,用韋達定理求出,進而求出答案.【詳解】由題意得:2與3是方程的兩個根,故,,所以.故選:C9、A【解析】利用中間量隔開三個值即可.【詳解】∵,∴,又,∴,故選:A【點睛】本題考查實數(shù)大小的比較,考查指對函數(shù)的性質(zhì),屬于??碱}型.10、C【解析】先求出,再利用和角的余弦公式計算求解.【詳解】∵為鈍角,且,∴,∴故選:C【點睛】本題主要考查同角的平方關(guān)系,考查和角的余弦公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設(shè)圓心坐標,則,,,根據(jù)這三個方程組可以計算得:,所以所求方程為:點睛:設(shè)出圓心與半徑,根據(jù)題意列出方程組,解出圓心和半徑即可12、##【解析】根據(jù)三角函數(shù)得定義即可的解.【詳解】解:因為點在角的終邊上,所以.故答案為:.13、【解析】∵3x﹣y=0與x+3y=0的互相垂直,且交點為原點,∴設(shè)點P到兩條直線的距離分別為a,b,則a≥0,b≥0,則a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴當a=1時,的距離,故答案為14、【解析】取值驗證可判斷;直接驗證可判斷;根據(jù)第一象限的概念可判斷;由誘導(dǎo)公式化簡可判斷.【詳解】中,取時,的終邊在x軸上,故錯誤;中,當時,,故正確;中,第一象限角的集合為,顯然在該范圍內(nèi)函數(shù)不單調(diào);中,因為,所以,所以,故正確.故答案為:②④15、5【解析】設(shè)g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.從而得到g(1)≤0且g(m)≤0,求得t的范圍,討論t的最值,代入m的不等式求得m的范圍,結(jié)合條件可得m的最大值【詳解】函數(shù)f(x)=x2,那么f(x+t)=x2+2tx+t2,對任意實數(shù)x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,從而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0當時,;當時,綜上可得,由m為正整數(shù),可得m的最大值為5故答案為5【點睛】本題考查不等式恒成立問題解法,注意運用二次函數(shù)的性質(zhì),考查運算求解能力,是中檔題16、##【解析】根據(jù)已知定義,結(jié)合弧度制的定義進行求解即可.【詳解】設(shè)120密位等于,所以有,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由奇函數(shù)得到,再由多項式相等可得;(2)由是奇函數(shù)和已知得到,再利用是上的單調(diào)增函數(shù)得到對任意恒成立.利用參數(shù)分離得對任意恒成立,再求,上最大值可得答案【詳解】(1)因為函數(shù)為上的奇函數(shù),所以對任意成立,即對任意成立,所以,所以(2)由得,因為函數(shù)為上的奇函數(shù),所以由(1)得,是上的單調(diào)增函數(shù),故對任意恒成立所以對任意恒成立因為,令,由,得,即所以的最大值為,故,即的最小值為【點睛】本題考查了函數(shù)的性質(zhì),不等式恒成立的問題,第二問的關(guān)鍵點是根據(jù)函數(shù)的為單調(diào)遞增函數(shù),得到,再利用參數(shù)分離后求的最大值,考查了學(xué)生分析問題、解決問題的能力.18、(1)見解析;(2)見解析【解析】試題分析:(1)取的中點,連接,構(gòu)造平行四邊形,證得線線平行,進而得到線面平行;(2)由第一問得到,又因為平面,,進而證得結(jié)論解析:(1)證明:取的中點,連接,分別是的中點,,,四邊形是平行四邊形,平面,平面,平面.(2)平面,,又,平面,,又,.點睛:這個題目考查了線面平行的證明,線線垂直的證明.一般證明線面平行是從線線平行入手,通過構(gòu)造平行四邊形,三角形中位線,梯形底邊等,找到線線平行,再證線面平行.證明線線垂直也可以從線面垂直入手19、(1);(2)【解析】(1)分別求出和的值域即可;(2)分兩種情況討論,若,有1個零點,時,有1個零點;若,無零點,時,有2個零點.【詳解】(1)當時,,則當時,,當時,單調(diào)遞增,則,綜上,的值域為;(2)當時,,當時,單調(diào)遞增,若,有1個零點,則,則時,也應(yīng)有1個零點,所以,又,則;若,無零點,則,則時,有2個零點,所以;綜上,a的取值范圍為.20、(1);(2)【解析】(1)通過分離參數(shù)法得,再通過配方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論