版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省重點中學(xué)數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1282.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=03.已知向量,,若,則與夾角的余弦值為()A. B. C. D.4.設(shè)橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關(guān)于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.5.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.6.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.7.若、滿足約束條件,則的最大值為()A. B. C. D.8.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.9.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離10.已知點,是函數(shù)的函數(shù)圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數(shù) B.,a為任意非零實數(shù)C.a(chǎn)、b均為任意實數(shù) D.不存在滿足條件的實數(shù)a,b11.己知,,,則()A. B. C. D.12.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為____________.14.在中,角的平分線交于,,,則面積的最大值為__________.15.已知,,,,則______.16.正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當(dāng)時,,求此時的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對恒成立,求的取值范圍.19.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且是與的等差中項.(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項和為,求滿足的最小正整數(shù)的值.20.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.21.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.22.(10分)已知實數(shù)x,y,z滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進方程.屬于基礎(chǔ)題.3、B【解析】
直接利用向量的坐標(biāo)運算得到向量的坐標(biāo),利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標(biāo)運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.4、C【解析】
連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關(guān)于原點對稱的兩點,不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質(zhì),考查了運算求解能力,屬于基礎(chǔ)題.5、D【解析】
由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點,則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達定理的運用,考查向量知識,屬于中檔題.6、B【解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).7、C【解析】
作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時對應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過點時,該直線在軸上的截距最大,此時取最大值,即.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質(zhì),屬于中檔題.9、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r10、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數(shù).【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數(shù).故選:A【點睛】本題考查導(dǎo)數(shù)的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.11、B【解析】
先將三個數(shù)通過指數(shù),對數(shù)運算變形,再判斷.【詳解】因為,,所以,故選:B.【點睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.12、B【解析】
設(shè),則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)漸近線得到,,計算得到離心率.【詳解】,一條漸近線方程為:,故,,.故答案為:.【點睛】本題考查了雙曲線的漸近線和離心率,意在考查學(xué)生的計算能力.14、15【解析】
由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因為,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時取等號所以面積的最大值為15故答案為:15【點睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.15、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計算得的值.【詳解】,,,,,,,,.故答案為:【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.16、【解析】
不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運算求解的能力,屬于難題,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經(jīng)驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應(yīng)用,解題時要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關(guān)系的運用,同時還要注意所得結(jié)果要符合實際意義.18、(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.19、(1)見解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項可知,當(dāng)時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時,,∴,,當(dāng)時,,整理可得,∴是首項為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點睛】本題考查了等差中項,考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項相消求和.當(dāng)已知有與的遞推關(guān)系時,常代入進行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項與前一項的差為常數(shù).20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
運用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運用累加法得出結(jié)果運用放縮法和累加法進行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當(dāng)時,成立;②當(dāng)時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了數(shù)列的綜合,運用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進行證明,本題較為困難。21、(1);(2)證明見解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時,恒成立,;②當(dāng)時,,即,;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 村委會道德講堂課程設(shè)計
- 2025版綠色建筑貸款借款合同3篇
- 2025版環(huán)保產(chǎn)業(yè)園區(qū)拆遷工程居間服務(wù)合同3篇
- 物業(yè)出租安全管理合同(2025年)
- 2025版自動化立體倉庫房屋租賃與自動化技術(shù)支持合同3篇
- 2025版高速公路工程合同履約進度監(jiān)測與評估3篇
- 2025年度工程設(shè)計合同的合作協(xié)議
- 2025年度醫(yī)療設(shè)備物資采購服務(wù)合同(新版)3篇
- 2025年度住宅小區(qū)物業(yè)合同轉(zhuǎn)讓及社區(qū)安全防范服務(wù)協(xié)議3篇
- 2025年度小規(guī)模企業(yè)員工勞動合同保障員工合法權(quán)益2篇
- 出生醫(yī)學(xué)證明警示教育培訓(xùn)
- 酒店業(yè)安全管理雙重預(yù)防機制制度
- 軟件正版化概念培訓(xùn)
- 譯林新版(2024)七年級英語上冊Unit 5 Reading課件
- 期末試卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)滬教版
- 光伏電站運維詳細(xì)版手冊
- 基于深度教學(xué)構(gòu)建高品質(zhì)課堂
- 51job在線測評題集
- 2024新教科版一年級科學(xué)上冊全冊教案
- 2、5、3的倍數(shù)(教案)-2023-2024學(xué)年五年級下冊數(shù)學(xué)人教版
- 第4課《古代詩歌四首》作業(yè)設(shè)計- 2024-2025學(xué)年統(tǒng)編版語文七年級上冊
評論
0/150
提交評論