版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省宿州市2025屆數(shù)學(xué)高三第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古典樂器一般按“八音”分類.這是我國(guó)最早按樂器的制造材料來(lái)對(duì)樂器進(jìn)行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.2.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.3.《算數(shù)書》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.4.某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場(chǎng)有名特約嘉賓給每位參賽選手評(píng)分,場(chǎng)內(nèi)外的觀眾可以通過(guò)網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場(chǎng)嘉賓的評(píng)分情況如下表,場(chǎng)內(nèi)外共有數(shù)萬(wàn)名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,,分組,繪成頻率分布直方圖如下:嘉賓評(píng)分嘉賓評(píng)分的平均數(shù)為,場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,所有嘉賓與場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,則下列選項(xiàng)正確的是()A. B. C. D.5.在四邊形中,,,,,,點(diǎn)在線段的延長(zhǎng)線上,且,點(diǎn)在邊所在直線上,則的最大值為()A. B. C. D.6.在中所對(duì)的邊分別是,若,則()A.37 B.13 C. D.7.的展開式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-28.設(shè),,,則、、的大小關(guān)系為()A. B. C. D.9.已知向量,若,則實(shí)數(shù)的值為()A. B. C. D.10.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④11.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開式中項(xiàng)的系數(shù)為_____.14.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識(shí)競(jìng)賽,則選出的名同學(xué)中恰好名男生名女生的概率為___________.15.在的展開式中,各項(xiàng)系數(shù)之和為,則展開式中的常數(shù)項(xiàng)為__________________.16.雙曲線的左右頂點(diǎn)為,以為直徑作圓,為雙曲線右支上不同于頂點(diǎn)的任一點(diǎn),連接交圓于點(diǎn),設(shè)直線的斜率分別為,若,則_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點(diǎn),滿足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(diǎn)(端點(diǎn)除外)使得直線與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.18.(12分)為迎接2022年冬奧會(huì),北京市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.19.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AEBD于E,延長(zhǎng)AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過(guò)程).20.(12分)每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會(huì)選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會(huì)增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)日平均氣溫為時(shí),該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報(bào)未來(lái)5天有3天日平均氣溫不高于,若把這5天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計(jì)分別為:21.(12分)已知,,且.(1)求的最小值;(2)證明:.22.(10分)設(shè)數(shù)列,的各項(xiàng)都是正數(shù),為數(shù)列的前n項(xiàng)和,且對(duì)任意,都有,,,(e是自然對(duì)數(shù)的底數(shù)).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
分別求得所有基本事件個(gè)數(shù)和滿足題意的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點(diǎn)睛】本題考查古典概型概率問(wèn)題的求解,關(guān)鍵是能夠利用組合的知識(shí)求得基本事件總數(shù)和滿足題意的基本事件個(gè)數(shù).2、B【解析】
根據(jù)二次函數(shù)圖象的對(duì)稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對(duì)稱軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)椋院瘮?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.3、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.4、C【解析】
計(jì)算出、,進(jìn)而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場(chǎng)外有數(shù)萬(wàn)名觀眾,所以,.故選:B.【點(diǎn)睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.5、A【解析】
依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因?yàn)辄c(diǎn)在線段的延長(zhǎng)線上,設(shè),解得,所在直線的方程為因?yàn)辄c(diǎn)在邊所在直線上,故設(shè)當(dāng)時(shí)故選:【點(diǎn)睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.6、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點(diǎn)睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.7、C【解析】
利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.8、D【解析】
因?yàn)?,,所以且在上單調(diào)遞減,且所以,所以,又因?yàn)椋?,所以,所?故選:D.【點(diǎn)睛】本題考查利用指對(duì)數(shù)函數(shù)的單調(diào)性比較指對(duì)數(shù)的大小,難度一般.除了可以直接利用單調(diào)性比較大小,還可以根據(jù)中間值“”比較大小.9、D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實(shí)數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點(diǎn)睛】本題考查了向量的數(shù)量積,考查了向量的坐標(biāo)運(yùn)算.對(duì)于向量問(wèn)題,若已知垂直,通??傻玫絻蓚€(gè)向量的數(shù)量積為0,繼而結(jié)合條件進(jìn)行化簡(jiǎn)、整理.10、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11、A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問(wèn)題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.12、B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】
由題得,,令,解得,代入可得展開式中含x6項(xiàng)的系數(shù).【詳解】由題得,,令,解得,所以二項(xiàng)式的展開式中項(xiàng)的系數(shù)為.故答案為:15【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,考查了利用通項(xiàng)公式去求展開式中某項(xiàng)的系數(shù)問(wèn)題.14、【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點(diǎn)睛】組合數(shù)與概率的基本運(yùn)用,熟悉組合數(shù)公式15、【解析】
利用展開式各項(xiàng)系數(shù)之和求得的值,由此寫出展開式的通項(xiàng),令指數(shù)為零求得參數(shù)的值,代入通項(xiàng)計(jì)算即可得解.【詳解】的展開式各項(xiàng)系數(shù)和為,得,所以,的展開式通項(xiàng)為,令,得,因此,展開式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中常數(shù)項(xiàng)的計(jì)算,涉及二項(xiàng)展開式中各項(xiàng)系數(shù)和的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系得,交圓于點(diǎn),所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點(diǎn),所以易知:即.故答案為:【點(diǎn)睛】此題考查根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級(jí)結(jié)論,此題可以簡(jiǎn)化計(jì)算.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2)存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【解析】
(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標(biāo)系:假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,求得平面的一個(gè)法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點(diǎn),∴,又∵平面平面,且平面平面,∴平面,取的中點(diǎn),連結(jié),則,從而,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系:則,,則,假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】
(Ⅰ)根據(jù)莖葉圖求出滿足條件的概率即可;(Ⅱ)結(jié)合圖表得到6人中有2個(gè)人考核為優(yōu),從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績(jī)有16個(gè),求出滿足條件的概率即可.【詳解】解:(Ⅰ)設(shè)這名學(xué)生考核優(yōu)秀為事件,由莖葉圖中的數(shù)據(jù)可以知道,30名同學(xué)中,有7名同學(xué)考核優(yōu)秀,所以所求概率約為(Ⅱ)設(shè)從圖中考核成績(jī)滿足的學(xué)生中任取2人,至少有一人考核成績(jī)優(yōu)秀為事件,因?yàn)楸碇谐煽?jī)?cè)诘?人中有2個(gè)人考核為優(yōu),所以基本事件空間包含15個(gè)基本事件,事件包含9個(gè)基本事件,所以(Ⅲ)根據(jù)表格中的數(shù)據(jù),滿足的成績(jī)有16個(gè),所以所以可以認(rèn)為此次冰雪培訓(xùn)活動(dòng)有效.【點(diǎn)睛】本題考查了莖葉圖問(wèn)題,考查概率求值以及轉(zhuǎn)化思想,是一道常規(guī)題.19、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標(biāo)原點(diǎn),分別以EF、ED、EA所在直線為x軸,y軸,z軸,
建立空間直角坐標(biāo)系E-xyz,設(shè)AB=BD=DC=AD=2,
則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個(gè)法向量為,設(shè)平面ADC的一個(gè)法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.
(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點(diǎn)睛】本題考查線面垂直的證明、幾何體體積計(jì)算、二面角有關(guān)的立體幾何綜合題,屬于中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品工藝學(xué)-第一章-緒論
- 2024專項(xiàng)房地產(chǎn)代購(gòu)協(xié)議范本
- 2024工程招投標(biāo)協(xié)議管理實(shí)訓(xùn)解析
- 安全法律法規(guī)清單
- 2024年度三方服務(wù)銷售業(yè)務(wù)協(xié)議范本
- 2024年度綜合咨詢業(yè)務(wù)協(xié)議
- 2024年度合板銷售與購(gòu)買協(xié)議
- 2024年水電安裝工程勞務(wù)協(xié)議細(xì)化
- 2024年貨物運(yùn)輸保障協(xié)議樣本
- 2024年招聘流程合規(guī)協(xié)議書范例
- 快手2025CNY《寨子里的歌晚》招商項(xiàng)目方案
- 2023年唐山銀行招聘考試真題
- 2024年消防月主題培訓(xùn)課件:全民消防 生命至上(含11月火災(zāi)事故)
- 心肌炎護(hù)理查房課件
- 廣告圖像數(shù)碼噴印材料市場(chǎng)
- 人教版(2024年新版)七年級(jí)數(shù)學(xué)上冊(cè)期中模擬測(cè)試卷(含答案)
- 2024年安徽蕪湖事業(yè)單位聯(lián)考高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024年公司工會(huì)工作計(jì)劃模版(三篇)
- 中國(guó)移動(dòng)鐵通公司招聘筆試題庫(kù)2024
- 醫(yī)院培訓(xùn)課件:《靜脈中等長(zhǎng)度導(dǎo)管臨床應(yīng)用專家共識(shí)》
- 榆能集團(tuán)筆試考什么
評(píng)論
0/150
提交評(píng)論