版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省源清中學高三下學期第一次月考(開學考試)數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.2.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交3.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.54.用電腦每次可以從區(qū)間內(nèi)自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.5.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.6.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定7.已知復數(shù),滿足,則()A.1 B. C. D.58.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.9.已知向量,,若,則與夾角的余弦值為()A. B. C. D.10.曲線在點處的切線方程為()A. B. C. D.11.函數(shù)的圖象可能是()A. B. C. D.12.函數(shù)圖象的大致形狀是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.14.已知等差數(shù)列的前項和為,且,則______.15.雙曲線的離心率為_________.16.已知向量,,,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)和的圖象關于原點對稱,且.(1)解關于的不等式;(2)如果對,不等式恒成立,求實數(shù)的取值范圍.18.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.19.(12分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.20.(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.21.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)若函數(shù)的值域為A,且,求a的取值范圍.22.(10分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.2、D【解析】
通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點睛】本題主要考查直線與平面的位置關系,直線與直線的位置關系,難度不大.3、D【解析】
根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎題.4、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.5、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.6、C【解析】
由函數(shù)的增減性及導數(shù)的應用得:設,求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結果.【詳解】解:設,則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導數(shù)的應用,屬中檔題.7、A【解析】
首先根據(jù)復數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數(shù)求模問題,考查復數(shù)的除法運算,屬于基礎題.8、D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學生對這些知識的理解掌握水平.9、B【解析】
直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數(shù)量積的應用,考查運算求解能力以及化歸與轉化思想.10、A【解析】
將點代入解析式確定參數(shù)值,結合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.11、A【解析】
先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.12、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,畫出空間幾何體,設的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應用,折疊后空間幾何體的線面位置關系應用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.14、【解析】
根據(jù)等差數(shù)列的性質(zhì)求得,結合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:【點睛】本小題考查等差數(shù)列的性質(zhì),前項和公式的應用等基礎知識;考查運算求解能力,應用意識.15、2【解析】16、-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標運算可得結論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數(shù)量積的關系是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關于原點對稱可得的表達式,再去掉絕對值即可解不等式;(2)對,不等式成立等價于,去絕對值得不等式組,即可求得實數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關于原點對稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.18、(1),;(2)見解析.【解析】
(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達定理求得的值,進而可得出結論.【詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯(lián)立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.【點睛】本題考查曲線的極坐標方程與普通方程之間的轉化,同時也考查了直線參數(shù)幾何意義的應用,涉及韋達定理的應用,考查計算能力,屬于中等題.19、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標方程與直角坐標方程之間的轉換關系可將曲線的方程化為直角坐標方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標方程與直角坐標方程之間的轉化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎題.20、(1)(2)【解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設,則,設直線的方程為,聯(lián)立直線與橢圓方程,消去,設,,列出韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設,∴.∵,∴,∴設直線的方程為,∴,∴,顯然恒成立.設,,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時直線的方程為,,∴點到直線的距離為,∴,即此時四邊形的面積為.【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的綜合應用,考查計算能力,屬于中檔題.21、(1)或(2)【解析】
(1)分類討論去絕對值即可;(2)根據(jù)條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關于a的不等式,然后求出a的取值范圍.【詳解】(1)當a=﹣1時,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當x≤﹣1時,原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當時,原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時不等式無解;當時,原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當a<﹣3時,,∴函數(shù)g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當a≥﹣3時,,∴函數(shù)g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).【點睛】本題考查了絕對值不等式的解法和利用集合間的關于求參數(shù)的取值范圍,考查了轉化思想和分類討論思想,屬于中檔題.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年黑龍江省佳木斯市公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 2024年河北省邢臺市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2023年云南省迪慶自治州公開招聘警務輔助人員輔警筆試自考題2卷含答案
- 浙江省杭州市(2024年-2025年小學六年級語文)統(tǒng)編版階段練習(上學期)試卷及答案
- 2024年PCB精密加工檢測設備項目資金籌措計劃書代可行性研究報告
- 2024年驅(qū)腸蟲藥項目投資申請報告代可行性研究報告
- 2023-2024年教師資格之中學美術學科知識與教學能力基礎試題庫+答案
- 2024年足浴店全面承包經(jīng)營合同3篇
- 2024年連鎖加盟經(jīng)營合同(含區(qū)域代理)
- 2024版抵押擔保合同示范文本
- 腫瘤科醫(yī)院感染管理制度
- 產(chǎn)品拆解:飛書多維表格怎么用
- 意識障礙的診斷鑒別診斷及處理
- 客房服務員(四級)考證理論考核試題及答案
- 英語演講知到章節(jié)答案智慧樹2023年哈爾濱工程大學
- 商務禮儀培訓職業(yè)禮儀員工培訓PPT
- 圍手術期手術部位感染預防與控制措施試題及答案
- 本田品質(zhì)管理基礎課程(課堂PPT)
- 教育科學研究方法(第二版) 單元1 主題6 熟悉本學科著名的辦學機構
- JC∕T 2647-2021 預拌混凝土生產(chǎn)企業(yè)廢水回收利用規(guī)范
- 三星公司供應鏈管理流程綜合分析報告
評論
0/150
提交評論