版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆重慶市外國(guó)語學(xué)校高三4月(四區(qū))聯(lián)考數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.33.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.4.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項(xiàng)和,則()A. B. C. D.5.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i6.已知函數(shù),,若成立,則的最小值是()A. B. C. D.7.“學(xué)習(xí)強(qiáng)國(guó)”學(xué)習(xí)平臺(tái)是由中宣部主管,以深入學(xué)習(xí)宣傳新時(shí)代中國(guó)特色社會(huì)主義思想為主要內(nèi)容,立足全體黨員?面向全社會(huì)的優(yōu)質(zhì)平臺(tái),現(xiàn)日益成為老百姓了解國(guó)家動(dòng)態(tài)?緊跟時(shí)代脈搏的熱門?該款軟件主要設(shè)有“閱讀文章”?“視聽學(xué)習(xí)”兩個(gè)學(xué)習(xí)模塊和“每日答題”?“每周答題”?“專項(xiàng)答題”?“挑戰(zhàn)答題”四個(gè)答題模塊?某人在學(xué)習(xí)過程中,“閱讀文章”不能放首位,四個(gè)答題板塊中有且僅有三個(gè)答題板塊相鄰的學(xué)習(xí)方法有()A.60 B.192 C.240 D.4328.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣29.設(shè),分別是橢圓的左、右焦點(diǎn),過的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.10.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.11.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.12.已知正三角形的邊長(zhǎng)為2,為邊的中點(diǎn),、分別為邊、上的動(dòng)點(diǎn),并滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則__________,__________.14.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實(shí)數(shù)λ的值是__.15.已知,滿足約束條件,則的最大值為________.16.正方形的邊長(zhǎng)為2,圓內(nèi)切于正方形,為圓的一條動(dòng)直徑,點(diǎn)為正方形邊界上任一點(diǎn),則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.19.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動(dòng)新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場(chǎng)的生產(chǎn)與銷售.下圖是我國(guó)某地區(qū)年至年新能源汽車的銷量(單位:萬臺(tái))按季度(一年四個(gè)季度)統(tǒng)計(jì)制成的頻率分布直方圖.(1)求直方圖中的值,并估計(jì)銷量的中位數(shù);(2)請(qǐng)根據(jù)頻率分布直方圖估計(jì)新能源汽車平均每個(gè)季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計(jì)年的銷售量.20.(12分)已知函數(shù).(1)若關(guān)于的不等式的整數(shù)解有且僅有一個(gè)值,當(dāng)時(shí),求不等式的解集;(2)已知,若,使得成立,求實(shí)數(shù)的取值范圍.21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.22.(10分)如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.(1)請(qǐng)問小明上學(xué)的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.2、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.3、D【解析】,則故選D.4、B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項(xiàng)和公式得【詳解】解:因?yàn)?,由等差?shù)列性質(zhì),若,則得,.為數(shù)列的前項(xiàng)和,則.故選:.【點(diǎn)睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項(xiàng)和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項(xiàng)和公式的靈活應(yīng)用,如.5、B【解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.6、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會(huì)將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).7、C【解析】
四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題.對(duì)相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.8、D【解析】
化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9、C【解析】
根據(jù)表示出線段長(zhǎng)度,由勾股定理,解出每條線段的長(zhǎng)度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.10、C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時(shí),退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時(shí)滿足輸出結(jié)果,故.故選:C.【點(diǎn)睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時(shí),可以一步一步的書寫,防止錯(cuò)誤,是一道容易題.11、A【解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.12、A【解析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點(diǎn),通過,找出與的關(guān)系.通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識(shí),求出其值域,即為的取值范圍.【詳解】以D為原點(diǎn),BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點(diǎn),所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點(diǎn)睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】
根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對(duì)稱性可得所有實(shí)數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因?yàn)闉榕己瘮?shù)且,所以的周期為.因?yàn)闀r(shí),,所以可作出在區(qū)間上的圖象,而方程的實(shí)數(shù)根是函數(shù)和函數(shù)的圖象的交點(diǎn)的橫坐標(biāo),結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡(jiǎn)圖,可知兩個(gè)函數(shù)的圖象在區(qū)間上有六個(gè)交點(diǎn).由圖象的對(duì)稱性可知,此六個(gè)交點(diǎn)的橫坐標(biāo)之和為,所以,故.因?yàn)?,所?故.故答案為:;【點(diǎn)睛】本題考查函數(shù)的奇偶性、周期性、對(duì)稱性的應(yīng)用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.14、【解析】
根據(jù)平面向量的數(shù)量積運(yùn)算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點(diǎn)睛】本題考查了單位向量和平面向量數(shù)量積的運(yùn)算問題,是中檔題.15、【解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時(shí),的最大值為.故答案為:9.【點(diǎn)睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.16、【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點(diǎn)睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙?duì)向量進(jìn)行轉(zhuǎn)換,便于計(jì)算解題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫?,且,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數(shù)化,化繁為簡(jiǎn),屬中檔題.18、(1);(2).【解析】
(1)將函數(shù)的解析式表示為分段函數(shù),然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不等式即可得出實(shí)數(shù)的取值范圍.【詳解】.(1)當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集;(2)當(dāng)時(shí),函數(shù)單調(diào)遞增,則;當(dāng)時(shí),函數(shù)單調(diào)遞減,則,即;當(dāng)時(shí),函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,,解得.因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了絕對(duì)值不等式中的參數(shù)問題,考查分類討論思想的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.19、(1),中位數(shù)為;(2)新能源汽車平均每個(gè)季度的銷售量為萬臺(tái),以此預(yù)計(jì)年的銷售量約為萬臺(tái).【解析】
(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計(jì)算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個(gè)矩形底邊的中點(diǎn)值乘以相應(yīng)矩形的面積,相加可得出銷量的平均數(shù),由此可預(yù)計(jì)年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個(gè)季度的銷售量為(萬臺(tái)),由此預(yù)測(cè)年的銷售量為萬臺(tái).【點(diǎn)睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)求解不等式,結(jié)合整數(shù)解有且僅有一個(gè)值,可得,分類討論,求解不等式,即得解;(2)轉(zhuǎn)化,使得成立為,利用不等式性質(zhì),求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因?yàn)椋?,?dāng)時(shí),,不等式等價(jià)于或或即或或,故,故不等式的解集為.(2)因?yàn)?,由,可得,又由,使得成立,則,解得或.故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了絕對(duì)值不等式的求解和恒成立問題,考查了學(xué)生轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21、(1),;(2)或【解析】
(1)將曲線的極坐標(biāo)方程和直線的參數(shù)方程化為直角坐標(biāo)方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高新企業(yè)培訓(xùn)課件
- 贛南衛(wèi)生健康職業(yè)學(xué)院《建筑設(shè)計(jì)基礎(chǔ)一》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《學(xué)校社會(huì)工作》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛東學(xué)院《IP路由與交換技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《醫(yī)院銷售技巧培訓(xùn)》課件
- 七年級(jí)道德與法治上冊(cè)第一單元成長(zhǎng)的節(jié)拍第三課發(fā)現(xiàn)自己第2框做更好的自己說課稿新人教版
- 三年級(jí)科學(xué)上冊(cè)第六單元人與大地17砂和黏土教案首師大版
- 科學(xué)課件圖片小學(xué)生
- 三年級(jí)下學(xué)期班主任工作參考計(jì)劃
- 大數(shù)據(jù)時(shí)代會(huì)計(jì)從業(yè)人員素質(zhì)提升策略分析
- 投標(biāo)述標(biāo)演講稿
- 企業(yè)名稱:個(gè)人防護(hù)用品(PPE)管理規(guī)定
- 2023年工裝行業(yè)分析報(bào)告及未來五至十年行業(yè)發(fā)展報(bào)告
- 中國(guó)慢性腰背痛診療指南2024版解讀
- 2024年自然資源部東海局所屬事業(yè)單位招聘59人歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- TTAF 238.1-2024 未成年人個(gè)人信息網(wǎng)絡(luò)保護(hù)要求 第1部分:身份核驗(yàn)
- 彈性力學(xué)材料模型:彈塑性材料:彈塑性本構(gòu)關(guān)系技術(shù)教程
- 平山水利樞紐設(shè)計(jì)說明書
- 2024年高考英語一模試題分類匯編:概要寫作(上海專用)(解析版)
- 院內(nèi)突發(fā)心跳呼吸驟停、昏迷、跌倒事件應(yīng)急預(yù)案及程序
- 2024年國(guó)家開放大學(xué)電大橋梁工程技術(shù)形考任務(wù)一、二、三、四答案
評(píng)論
0/150
提交評(píng)論