




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
4.2.1解一元一次方程分層練習(xí)考察題型一等式的性質(zhì)1.下列運(yùn)用等式的性質(zhì),變形不正確的是A.若,則 B.若,則 C.若,則 D.若,則2.下列變形正確的是A.若,則 B.若,則 C.若,則 D.若,則考察題型二解一元一次方程1.解方程時(shí),去分母正確的是A. B. C. D.2.小明解方程的步驟如下:解:方程兩邊同乘6得:,第一步去括號得:,第二步移項(xiàng)得:,第三步合并同類項(xiàng)得:,第四步系數(shù)化為1得:.第五步(1)以上解題步驟中,開始出錯(cuò)的是第步;(2)直接寫出方程的解.3.解下列方程:(1);(2).4.解下列方程:(1);(2).5.解下列方程:(1);(2).考察題型三利用一元一次方程的解求參、求解【直接求參】1.已知是方程的解,則.2.已知:關(guān)于的方程的解是,其中且,則代數(shù)式的值是A. B. C. D.【先求參,再求解】3.若方程的解是,則關(guān)于的方程的解是.4.整式的值隨的取值不同而不同,表是當(dāng)取不同值時(shí)對應(yīng)的整式的值:則關(guān)于的方程的解為.0127531【先求解,再求參】5.已知關(guān)于的方程,有正整數(shù)解,則整數(shù)的值為.6.已知,為定值,關(guān)于的方程,無論為何值,它的解總是1,則.7.如果關(guān)于的方程的解比關(guān)于的方程的解大2,求的值?8.已知關(guān)于的方程和有相同的解,求與方程的解.9.已知關(guān)于的一個(gè)方程是一元一次方程.(1);(2)若這個(gè)方程的與關(guān)于的一元一次方程的解互為相反數(shù),求的值.考察題型四新定義1.對任意4個(gè)有理數(shù)、、、,定義新運(yùn)算.(1)求.(2)若,求的值.(3)若,求的值.2.用“”定義一種新運(yùn)算:對于任意有理數(shù)和,規(guī)定,如:.(1)求的值;(2)若,求的值.3.對于任意四個(gè)有理數(shù)、、、,可以組成兩個(gè)有理數(shù)對與.規(guī)定:,,.如:,,.根據(jù)上述規(guī)定解決下列問題:(1)求有理數(shù)對,,的值;(2)若有理數(shù)對,求;(3)若有理數(shù)對,,的值與的取值無關(guān),求的值.4.我們規(guī)定,若關(guān)于的一元一次方程的解為,則稱該方程為“差解方程”,例如:的解為2,且,則方程是差解方程.請根據(jù)上述規(guī)定解答下列問題:(1)判斷是否是差解方程;(2)若關(guān)于的一元一次方程是差解方程,求的值.5.定義:如果兩個(gè)一元一次方程的解互為相反數(shù),我們就稱這兩個(gè)方程為“和諧方程”.例如:方程和為“和諧方程”.(1)若關(guān)于的方程與方程是“和諧方程”,求的值;(2)若“和諧方程”的兩個(gè)解的差為4,其中一個(gè)解為,求的值;(3)若無論取任何有理數(shù),關(guān)于的方程(、為常數(shù))與關(guān)于的方程都是“和諧方程”,求的值.1.解方程:.2.我們規(guī)定,關(guān)于的一元一次方程的解為,則稱該方程為和解方程,例如的解為,則方程為和解方程.請根據(jù)上邊規(guī)定解答下列問題:(1)下列關(guān)于的一元一次方程是“和解方程”的有.①;②;③.(2)若關(guān)于的一元一次方程是和解方程,則.(3)關(guān)于的一元一次方程是和解方程,則代數(shù)式的值為.(4)關(guān)于的一元一次方程是和解方程且它的解為,求代數(shù)式的值.3.閱讀理解學(xué):我們都應(yīng)該知道,任何無限循環(huán)小數(shù)都應(yīng)該屬于有理數(shù),那是因?yàn)樗袩o限循環(huán)小數(shù)都可以化成分?jǐn)?shù)形式,而分?jǐn)?shù)屬于有理數(shù).那么無限循環(huán)小數(shù)怎么化成分?jǐn)?shù)呢?下面的學(xué)習(xí)材料會(huì)告訴我們原因和方法:問題:利用一元一次方程將化成分?jǐn)?shù).設(shè).由,可知,即.可解得,即.(1)將直接寫成分?jǐn)?shù)形式為.(2)請仿照上述方法把下列小數(shù)化成分?jǐn)?shù),要求寫出利用一元一次方程進(jìn)行解答的過程.①;②.
4.2.1解一元一次方程分層練習(xí)考察題型一等式的性質(zhì)1.下列運(yùn)用等式的性質(zhì),變形不正確的是A.若,則 B.若,則 C.若,則 D.若,則【詳解】解:、若,則,此選項(xiàng)正確;、若,則,此選項(xiàng)正確;、若,當(dāng)時(shí),此選項(xiàng)錯(cuò)誤;、若,則,此選項(xiàng)正確.故本題選:.2.下列變形正確的是A.若,則 B.若,則 C.若,則 D.若,則【詳解】解:.若,則,故本項(xiàng)錯(cuò)誤;.若,則,故本項(xiàng)錯(cuò)誤;.若,則,故本項(xiàng)正確;.若,則,故本項(xiàng)錯(cuò)誤.故本題選:.考察題型二解一元一次方程1.解方程時(shí),去分母正確的是A. B. C. D.【詳解】解:方程兩邊同時(shí)乘以6得:,去括號得:.故本題選:.2.小明解方程的步驟如下:解:方程兩邊同乘6得:,第一步去括號得:,第二步移項(xiàng)得:,第三步合并同類項(xiàng)得:,第四步系數(shù)化為1得:.第五步(1)以上解題步驟中,開始出錯(cuò)的是第步;(2)直接寫出方程的解.【詳解】解:解:(1)由解方程的過程可知:出錯(cuò)的是第五步,故本題答案為:五;(2)方程兩邊同乘以6得:,第一步去括號得:,第二步移項(xiàng)得:,第三步合并同類項(xiàng)得:,第四步系數(shù)化為1得:.第五步3.解下列方程:(1);(2).【詳解】解:(1)去分母得:,去括號得:,移項(xiàng)合并得:,系數(shù)化為1得:;(2)去分母得:,去括號得:,移項(xiàng)合并得:,系數(shù)化為1得:.4.解下列方程:(1);(2).【詳解】解:(1)去括號得:,移項(xiàng)得:,合并同類項(xiàng)得:,系數(shù)化為1得:;(2)去分母得:,去括號得:,移項(xiàng)得:,合并同類項(xiàng)得:,系數(shù)化為1得:.5.解下列方程:(1);(2).【詳解】解:(1)去分母得:,去括號得:,移項(xiàng)合并得:,系數(shù)化為1得:;(2)方程整理得:,去分母去括號得:,移項(xiàng)合并得:,系數(shù)化為1得:.考察題型三利用一元一次方程的解求參、求解【直接求參】1.已知是方程的解,則.【詳解】解:是方程的解,把代入方程得:,解得:.故本題答案為:.2.已知:關(guān)于的方程的解是,其中且,則代數(shù)式的值是A. B. C. D.【詳解】解:把代入方程得:,去分母得:,去括號得:,化簡得:,,.故本題選:.【先求參,再求解】3.若方程的解是,則關(guān)于的方程的解是.【詳解】解:把代入方程得:,,,,,,,,;法二:由整體法可得:,.故本題答案為:.4.整式的值隨的取值不同而不同,表是當(dāng)取不同值時(shí)對應(yīng)的整式的值:則關(guān)于的方程的解為.0127531【詳解】解:時(shí),,,解得:,時(shí),,,解得:,,,移項(xiàng)得:,合并同類項(xiàng)得:,系數(shù)化為1得:.故本題答案為:.【先求解,再求參】5.已知關(guān)于的方程,有正整數(shù)解,則整數(shù)的值為.【詳解】解:移項(xiàng)得:,合并同類項(xiàng)得:,系數(shù)化為1得:,方程有正整數(shù)解,或或,解得:或或.故本題答案為:3或1或0.6.已知,為定值,關(guān)于的方程,無論為何值,它的解總是1,則.【詳解】解:把代入方程得:,,,,,無論為何值,它的解總是1,,,解得:,,則.故本題答案為:0.7.如果關(guān)于的方程的解比關(guān)于的方程的解大2,求的值?【詳解】解:解方程得:,解方程得:,根據(jù)題意得:,解得:.8.已知關(guān)于的方程和有相同的解,求與方程的解.【詳解】解:解第一個(gè)方程得:,解第二個(gè)方程得:,,解得:,.9.已知關(guān)于的一個(gè)方程是一元一次方程.(1);(2)若這個(gè)方程的與關(guān)于的一元一次方程的解互為相反數(shù),求的值.【詳解】解:(1)方程是關(guān)于的一元一次方程,且,解得:,故本題答案為:;(2)由(1)知:,則這個(gè)方程為:,解得:,這個(gè)方程的與關(guān)于的一元一次方程的解互為相反數(shù),的解為,把代入得:,解得:.考察題型四新定義1.對任意4個(gè)有理數(shù)、、、,定義新運(yùn)算.(1)求.(2)若,求的值.(3)若,求的值.【詳解】解:(1)根據(jù)題中的新定義得:,故本題答案為:;(2)根據(jù)題中的新定義化簡得:,解得:;(3)根據(jù)題中的新定義化簡得:,解得:.2.用“”定義一種新運(yùn)算:對于任意有理數(shù)和,規(guī)定,如:.(1)求的值;(2)若,求的值.【詳解】解:(1);(2),,即,解得:.3.對于任意四個(gè)有理數(shù)、、、,可以組成兩個(gè)有理數(shù)對與.規(guī)定:,,.如:,,.根據(jù)上述規(guī)定解決下列問題:(1)求有理數(shù)對,,的值;(2)若有理數(shù)對,求;(3)若有理數(shù)對,,的值與的取值無關(guān),求的值.【詳解】解:(1)原式;(2),,,,,;(3)原式,有理數(shù)對,,的值與的取值無關(guān),,.4.我們規(guī)定,若關(guān)于的一元一次方程的解為,則稱該方程為“差解方程”,例如:的解為2,且,則方程是差解方程.請根據(jù)上述規(guī)定解答下列問題:(1)判斷是否是差解方程;(2)若關(guān)于的一元一次方程是差解方程,求的值.【詳解】解:(1),,,是差解方程;(2)解方程得:,關(guān)于的一元一次方程是差解方程,,解得:.5.定義:如果兩個(gè)一元一次方程的解互為相反數(shù),我們就稱這兩個(gè)方程為“和諧方程”.例如:方程和為“和諧方程”.(1)若關(guān)于的方程與方程是“和諧方程”,求的值;(2)若“和諧方程”的兩個(gè)解的差為4,其中一個(gè)解為,求的值;(3)若無論取任何有理數(shù),關(guān)于的方程(、為常數(shù))與關(guān)于的方程都是“和諧方程”,求的值.【詳解】解:(1)方程的解為,方程的解為,,解得:;(2)根據(jù)題意得:或,或;(3)方程的解為,且兩個(gè)方程為“和諧方程”,,當(dāng)時(shí),,,,無論取任何有理數(shù)都成立,,,,,.1.解方程:.【詳解】解:,,,.2.我們規(guī)定,關(guān)于的一元一次方程的解為,則稱該方程為和解方程,例如的解為,則方程為和解方程.請根據(jù)上邊規(guī)定解答下列問題:(1)下列關(guān)于的一元一次方程是“和解方程”的有.①;②;③.(2)若關(guān)于的一元一次方程是和解方程,則.(3)關(guān)于的一元一次方程是和解方程,則代數(shù)式的值為.(4)關(guān)于的一元一次方程是和解方程且它的解為,求代數(shù)式的值.【詳解】解:(1)①的解是,故不是“和解方程”,②的解是,故是“和解方程”,③的解是,故不是“和解方程”,故本題答案為:②;(2)是和解方程,,解得:,故本題答案為:;(3)是和解方程,,化簡得:,,故本題答案為:;(4)是和解方程且它的解為,,解得:,,.3.閱讀理解學(xué):我們都應(yīng)該知道,任何無限循環(huán)小數(shù)都應(yīng)該屬于有理數(shù),那是因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店協(xié)議住宿合同
- 委托審計(jì)服務(wù)合同協(xié)議書
- 駕校合同解除協(xié)議
- 報(bào)名協(xié)議合同
- 全款購車協(xié)議合同
- 卡車租車協(xié)議合同
- 耗材合同空檔期補(bǔ)充協(xié)議
- 補(bǔ)充協(xié)議增加合同當(dāng)事人
- 違反合同賠償協(xié)議
- 油漆合同協(xié)議范本
- 2025年浙江長征職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2024-2030年中國便攜式超聲行業(yè)市場發(fā)展監(jiān)測及投資潛力預(yù)測報(bào)告
- 《習(xí)作:我的“自畫像”》說課稿-2023-2024學(xué)年四年級下冊語文統(tǒng)編版001
- 2025無人駕駛視覺識別技術(shù)
- 湖南省長沙市雨花區(qū)2024-2025學(xué)年高一上學(xué)期期末考試英語試卷 含解析
- 企業(yè)職務(wù)犯罪法制講座
- 【農(nóng)學(xué)課件】瓜類蔬菜栽培
- IATF16949體系推行計(jì)劃(任務(wù)清晰版)
- 2024年軍事理論知識全冊復(fù)習(xí)題庫及答案
- 2023年江蘇皋開投資發(fā)展集團(tuán)有限公司招聘筆試真題
- 任務(wù) 混合動(dòng)力汽車空調(diào)系統(tǒng)典型構(gòu)造與檢修
評論
0/150
提交評論