遼寧省大連市達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第1頁(yè)
遼寧省大連市達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第2頁(yè)
遼寧省大連市達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第3頁(yè)
遼寧省大連市達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第4頁(yè)
遼寧省大連市達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省大連市達(dá)標(biāo)名校2024屆中考數(shù)學(xué)五模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學(xué)記數(shù)法表示應(yīng)為()A. B. C. D.2.拋物線經(jīng)過(guò)第一、三、四象限,則拋物線的頂點(diǎn)必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖:已知AB⊥BC,垂足為B,AB=3.5,點(diǎn)P是射線BC上的動(dòng)點(diǎn),則線段AP的長(zhǎng)不可能是()A.3 B.3.5 C.4 D.54.安徽省2010年末森林面積為3804.2千公頃,用科學(xué)記數(shù)法表示3804.2千正確的是()A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×1055.已知方程x2﹣x﹣2=0的兩個(gè)實(shí)數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣16.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大7.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF8.下列圖標(biāo)中,是中心對(duì)稱圖形的是()A. B.C. D.9.我國(guó)“神七”在2008年9月26日順利升空,宇航員在27日下午4點(diǎn)30分在距離地球表面423公里的太空中完成了太空行走,這是我國(guó)航天事業(yè)的又一歷史性時(shí)刻.將423公里用科學(xué)記數(shù)法表示應(yīng)為()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×10610.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱軸上一點(diǎn),則OP+AP的最小值為().A.3 B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.|-3|=_________;12.若式子在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是.13.為慶?!傲弧眱和?jié),某幼兒園舉行用火柴棒擺“金魚(yú)”比賽.如圖所示,按照這樣的規(guī)律,擺第n個(gè)圖,需用火柴棒的根數(shù)為_(kāi)______________.14.如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號(hào)是(把你認(rèn)為正確的都填上).15.如圖,直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,點(diǎn)C在x軸的正半軸上,若∠ACB=90°,則點(diǎn)C的坐標(biāo)為_(kāi)_____.16.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點(diǎn),與x軸、y軸分別相交于D、C兩點(diǎn),若AB=2,則k=_____.三、解答題(共8題,共72分)17.(8分)有一個(gè)n位自然數(shù)能被x0整除,依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后,能被x0+3整除,…,能被x0+n﹣1整除,則稱這個(gè)n位數(shù)是x0的一個(gè)“輪換數(shù)”.例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個(gè)“輪換數(shù)”;再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2個(gè)一個(gè)“輪換數(shù)”.(1)若一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,求證這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.(2)若三位自然數(shù)是3的一個(gè)“輪換數(shù)”,其中a=2,求這個(gè)三位自然數(shù).18.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問(wèn)題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問(wèn)題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開(kāi)了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說(shuō)明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫(xiě)出結(jié)果(用含α的式子表示).19.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長(zhǎng);②當(dāng)為何值時(shí),AB?AC的值最大?20.(8分)解方程:(x﹣3)(x﹣2)﹣4=1.21.(8分)P是外一點(diǎn),若射線PC交于點(diǎn)A,B兩點(diǎn),則給出如下定義:若,則點(diǎn)P為的“特征點(diǎn)”.當(dāng)?shù)陌霃綖?時(shí).在點(diǎn)、、中,的“特征點(diǎn)”是______;點(diǎn)P在直線上,若點(diǎn)P為的“特征點(diǎn)”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點(diǎn)M,N,若線段MN上的所有點(diǎn)都不是的“特征點(diǎn)”,直接寫(xiě)出點(diǎn)C的橫坐標(biāo)的取值范圍.22.(10分)一輛汽車(chē)行駛時(shí)的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.根據(jù)圖象,直接寫(xiě)出汽車(chē)行駛400千米時(shí),油箱內(nèi)的剩余油量,并計(jì)算加滿油時(shí)油箱的油量;求關(guān)于的函數(shù)關(guān)系式,并計(jì)算該汽車(chē)在剩余油量5升時(shí),已行駛的路程.23.(12分)M中學(xué)為創(chuàng)建園林學(xué)校,購(gòu)買(mǎi)了若干桂花樹(shù)苗,計(jì)劃把迎賓大道的一側(cè)全部栽上桂花樹(shù)(兩端必須各栽一棵),并且每?jī)煽脴?shù)的間隔相等,如果每隔5米栽1棵,則樹(shù)苗缺11棵;如果每隔6米栽1棵,則樹(shù)苗正好用完,求購(gòu)買(mǎi)了桂花樹(shù)苗多少棵?24.如圖,?ABCD的邊CD為斜邊向內(nèi)作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點(diǎn)E在平行四邊形內(nèi)部,連接AE、BE,求∠AEB的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:在實(shí)際生活中,許多比較大的數(shù),我們習(xí)慣上都用科學(xué)記數(shù)法表示,使書(shū)寫(xiě)、計(jì)算簡(jiǎn)便.解答:解:根據(jù)題意:2500000=2.5×1.故選C.2、A【解析】

根據(jù)二次函數(shù)圖象所在的象限大致畫(huà)出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過(guò)第一、三、四象限,∴拋物線的頂點(diǎn)在第一象限.故選A.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫(huà)出函數(shù)圖象,利用數(shù)形結(jié)合解決問(wèn)題是解題的關(guān)鍵.3、A【解析】

根據(jù)直線外一點(diǎn)和直線上點(diǎn)的連線中,垂線段最短的性質(zhì),可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點(diǎn)P是射線BC上的動(dòng)點(diǎn),得AP≥AB,AP≥3.5,故選:A.【點(diǎn)睛】本題考查垂線段最短的性質(zhì),解題關(guān)鍵是利用垂線段的性質(zhì).4、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.【詳解】∵3804.2千=3804200,∴3804200=3.8042×106;故選:C.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.5、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計(jì)算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個(gè)根,則x1,x2與系數(shù)的關(guān)系式:,.6、D【解析】

分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【點(diǎn)睛】本題考查了中位數(shù)、平均數(shù)、方差的計(jì)算,熟練掌握中位數(shù)、平均數(shù)、方差的計(jì)算方法是解答本題的關(guān)鍵.7、B【解析】

根據(jù)三角形一邊的中點(diǎn)與此邊所對(duì)頂點(diǎn)的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點(diǎn)睛】本題考查了三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點(diǎn)與此邊所對(duì)頂點(diǎn)的連線叫做三角形的中線.8、B【解析】

根據(jù)中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是中心對(duì)稱圖形,故本選項(xiàng)正確;C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選B.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的概念:中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.9、C【解析】423公里=423000米=4.23×105米.故選C.10、A【解析】

連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點(diǎn)B,再利用配方法得到點(diǎn)A,得到OA的長(zhǎng)度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點(diǎn)之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時(shí)-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因?yàn)锳P垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時(shí),PB+PH最短,而B(niǎo)C=AB=3,所以最小值為3.故選A.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合運(yùn)用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】分析:根據(jù)負(fù)數(shù)的絕對(duì)值等于這個(gè)數(shù)的相反數(shù),即可得出答案.解答:解:|-1|=1.故答案為1.12、.【解析】

根據(jù)二次根式被開(kāi)方數(shù)必須是非負(fù)數(shù)的條件,要使在實(shí)數(shù)范圍內(nèi)有意義,必須.故答案為13、6n+1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),后一個(gè)圖形比前一個(gè)圖形多6根火柴棒,即:第1個(gè)圖形有8根火柴棒,第1個(gè)圖形有14=6×1+8根火柴棒,第3個(gè)圖形有10=6×1+8根火柴棒,……,第n個(gè)圖形有6n+1根火柴棒.14、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD。∵△AEF是等邊三角形,∴AE=AF?!咴赗t△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)?!郆E=DF?!連C=DC,∴BC﹣BE=CD﹣DF?!郈E=CF?!啖僬f(shuō)法正確?!逤E=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°?!摺螦EF=60°,∴∠AEB=75°?!啖谡f(shuō)法正確。如圖,連接AC,交EF于G點(diǎn),∴AC⊥EF,且AC平分EF?!摺螩AD≠∠DAF,∴DF≠FG。∴BE+DF≠EF?!啖壅f(shuō)法錯(cuò)誤?!逧F=2,∴CE=CF=。設(shè)正方形的邊長(zhǎng)為a,在Rt△ADF中,,解得,∴?!?。∴④說(shuō)法正確。綜上所述,正確的序號(hào)是①②④。15、(2,0)【解析】

根據(jù)直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,可得AB=2AO=4,再根據(jù)Rt△ABC中,OC=AB=2,即可得到點(diǎn)C的坐標(biāo)【詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點(diǎn),OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點(diǎn)C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點(diǎn)問(wèn)題,解決問(wèn)題的關(guān)鍵是利用直角三角形斜邊上中線的性質(zhì)得到OC的長(zhǎng).16、-3【解析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點(diǎn),∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點(diǎn)睛:本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題、根與系數(shù)的關(guān)系、勾股定理、圖象上點(diǎn)的坐標(biāo)特征等,題目具有一定的代表性,綜合性強(qiáng),有一定難度.三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2)201,207,1【解析】試題分析:(1)先設(shè)出兩位自然數(shù)的十位數(shù)字,表示出這個(gè)兩位自然數(shù),和輪換兩位自然數(shù)即可;

(2)先表示出三位自然數(shù)和輪換三位自然數(shù),再根據(jù)能被5整除,得出b的可能值,進(jìn)而用4整除,得出c的可能值,最后用能被3整除即可.試題解析:(1)設(shè)兩位自然數(shù)的十位數(shù)字為x,則個(gè)位數(shù)字為2x,∴這個(gè)兩位自然數(shù)是10x+2x=12x,∴這個(gè)兩位自然數(shù)是12x能被6整除,∵依次輪換個(gè)位數(shù)字得到的兩位自然數(shù)為10×2x+x=21x∴輪換個(gè)位數(shù)字得到的兩位自然數(shù)為21x能被7整除,∴一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.(2)∵三位自然數(shù)是3的一個(gè)“輪換數(shù)”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次輪換得到的三位自然數(shù)是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次輪換得到的三位自然數(shù)是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的個(gè)位數(shù)字不是0,便是5,∴b=0或b=5,當(dāng)b=0時(shí),∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴這個(gè)三位自然數(shù)可能是為201,203,205,207,209,而203,205,209不能被3整除,∴這個(gè)三位自然數(shù)為201,207,當(dāng)b=5時(shí),∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴這個(gè)三位自然數(shù)可能是為251,1,257,259,而251,257,259不能被3整除,∴這個(gè)三位自然數(shù)為1,即這個(gè)三位自然數(shù)為201,207,1.【點(diǎn)睛】此題是數(shù)的整除性,主要考查了3的倍數(shù),4的倍數(shù),5的倍數(shù)的特點(diǎn),解本題的關(guān)鍵是用5的倍數(shù)求出b的值.18、(1)GF=GD,GF⊥GD;(2)見(jiàn)解析;(3)見(jiàn)解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對(duì)稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對(duì)角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時(shí),AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時(shí).點(diǎn)睛:本題主要考查圓的綜合問(wèn)題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí)點(diǎn).20、x1=,x2=【解析】試題分析:方程整理為一般形式,找出a,b,c的值,代入求根公式即可求出解.試題解析:解:方程化為,,,.>1..即,.21、(1)①、;②(2)或,.【解析】

據(jù)若,則點(diǎn)P為的“特征點(diǎn)”,可得答案;根據(jù)若,則點(diǎn)P為的“特征點(diǎn)”,可得,根據(jù)等腰直角三角形的性質(zhì),可得答案;根據(jù)垂線段最短,可得PC最短,根據(jù)等腰直角三角形的性質(zhì),可得,根據(jù)若,則點(diǎn)P為的“特征點(diǎn)”,可得答案.【詳解】解:,,點(diǎn)是的“特征點(diǎn)”;,,點(diǎn)是的“特征點(diǎn)”;,,點(diǎn)不是的“特征點(diǎn)”;故答案為、如圖1,在上,若存在的“特征點(diǎn)”點(diǎn)P,點(diǎn)O到直線的距離.直線交y軸于點(diǎn)E,過(guò)O作直線于點(diǎn)H.因?yàn)椋谥?,可知.可得同理可得.的取值范圍是?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論