版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省婺源縣聯(lián)考2024年中考數(shù)學(xué)適應(yīng)性模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長(zhǎng)為半徑畫(huà)弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過(guò)點(diǎn)E作射線OE,連接CD.則下列說(shuō)法錯(cuò)誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱2.鄭州地鐵Ⅰ號(hào)線火車(chē)站站口分布如圖所示,有A,B,C,D,E五個(gè)進(jìn)出口,小明要從這里乘坐地鐵去新鄭機(jī)場(chǎng),回來(lái)后仍從這里出站,則他恰好選擇從同一個(gè)口進(jìn)出的概率是()A. B. C. D.3.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°4.若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點(diǎn)坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)5.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點(diǎn)A(1,2),有下面四個(gè)結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④6.下列計(jì)算錯(cuò)誤的是()A.4x3?2x2=8x5B.a(chǎn)4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b27.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點(diǎn),則B球一次反彈后擊中A球的概率是()A. B. C. D.8.甲、乙兩盒中分別放入編號(hào)為1、2、3、4的形狀相同的4個(gè)小球,從甲盒中任意摸出一球,再?gòu)囊液兄腥我饷鲆磺颍瑢汕蚓幪?hào)數(shù)相加得到一個(gè)數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.69.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.10.正方形ABCD在直角坐標(biāo)系中的位置如圖所示,將正方形ABCD繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)180°后,C點(diǎn)的坐標(biāo)是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,中,∠,,的面積為,為邊上一動(dòng)點(diǎn)(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為_(kāi)___.12.已知,是關(guān)于x的一元二次方程x2+(2m+3)x+m2=0的兩個(gè)不相等的實(shí)數(shù)根,且滿足=﹣1,則m的值是____.13.化簡(jiǎn)二次根式的正確結(jié)果是_____.14.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點(diǎn),P是直線BC上一點(diǎn),把△BDP沿PD所在直線翻折后,點(diǎn)B落在點(diǎn)Q處,如果QD⊥BC,那么點(diǎn)P和點(diǎn)B間的距離等于____.15.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長(zhǎng)是_______.16.如圖,平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)B(﹣4,0)的直線y=kx+b與直線y=mx+2相交于點(diǎn)A(,-1),則不等式mx+2<kx+b<0的解集為_(kāi)___.17.分解因式:_______三、解答題(共7小題,滿分69分)18.(10分)我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:(1)接受問(wèn)卷調(diào)查的學(xué)生共有______人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)_____°.(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為_(kāi)______人.(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到女生A的概率.19.(5分)如圖,已知拋物線過(guò)點(diǎn)A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點(diǎn)M是拋物線AC段上的一個(gè)動(dòng)點(diǎn),當(dāng)圖中陰影部分的面積最小值時(shí),求點(diǎn)M的坐標(biāo);(3)在圖乙中,點(diǎn)C和點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)P在拋物線上,且∠PAB=∠CAC1,求點(diǎn)P的橫坐標(biāo).20.(8分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點(diǎn)A在點(diǎn)B左側(cè)).(1)當(dāng)拋物線過(guò)原點(diǎn)時(shí),求實(shí)數(shù)a的值;(2)①求拋物線的對(duì)稱軸;②求拋物線的頂點(diǎn)的縱坐標(biāo)(用含a的代數(shù)式表示);(3)當(dāng)AB≤4時(shí),求實(shí)數(shù)a的取值范圍.21.(10分)某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為_(kāi)_____%,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加?;@球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.22.(10分)如圖,在Rt△ABC中,,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明理由;若D為AB中點(diǎn),則當(dāng)=______時(shí),四邊形BECD是正方形.23.(12分)為了了解初一年級(jí)學(xué)生每學(xué)期參加綜合實(shí)踐活動(dòng)的情況,某區(qū)教育行政部門(mén)隨機(jī)抽樣調(diào)查了部分初一學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:(I)本次隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為,圖①中的m的值為;(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);(III)若該區(qū)初一年級(jí)共有學(xué)生2500人,請(qǐng)估計(jì)該區(qū)初一年級(jí)這個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù)大于4天的學(xué)生人數(shù).24.(14分)計(jì)算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點(diǎn)關(guān)于CD所在直線不對(duì)稱,錯(cuò)誤,符合題意.故選D.2、C【解析】
列表得出進(jìn)出的所有情況,再?gòu)闹写_定出恰好選擇從同一個(gè)口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計(jì)算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個(gè)口進(jìn)出的有5種情況,∴恰好選擇從同一個(gè)口進(jìn)出的概率為=,故選C.【點(diǎn)睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹(shù)狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點(diǎn)睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.4、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點(diǎn)坐標(biāo).詳解:當(dāng)或時(shí),,當(dāng)時(shí),,,解得,二次函數(shù)解析式為,拋物線的頂點(diǎn)坐標(biāo)為,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.5、B【解析】
根據(jù)拋物線圖象性質(zhì)確定a、b符號(hào),把點(diǎn)A代入y=ax2+bx得到a與b數(shù)量關(guān)系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關(guān)系.【詳解】解:根據(jù)圖象拋物線開(kāi)口向上,對(duì)稱軸在y軸右側(cè),則a>0,b<0,則①錯(cuò)誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯(cuò)誤.故答案為:B.【點(diǎn)睛】二次函數(shù)的圖像,sinα公式,不等式的解集.6、B【解析】
根據(jù)單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項(xiàng):4x3?1x1=8x5,故原題計(jì)算正確;
B選項(xiàng):a4和a3不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;
C選項(xiàng):(-x1)5=-x10,故原題計(jì)算正確;
D選項(xiàng):(a-b)1=a1-1ab+b1,故原題計(jì)算正確;
故選:B.【點(diǎn)睛】考查了整式的乘法,關(guān)鍵是掌握整式的乘法各計(jì)算法則.7、B【解析】試題解析:由圖可知可以瞄準(zhǔn)的點(diǎn)有2個(gè)..∴B球一次反彈后擊中A球的概率是.故選B.8、C【解析】解:甲和乙盒中1個(gè)小球任意摸出一球編號(hào)為1、2、3、1的概率各為,其中得到的編號(hào)相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.9、D【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對(duì)等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對(duì)等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.10、B【解析】試題分析:正方形ABCD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)180°后,C點(diǎn)的對(duì)應(yīng)點(diǎn)與C一定關(guān)于A對(duì)稱,A是對(duì)稱點(diǎn)連線的中點(diǎn),據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)180°后C的對(duì)應(yīng)點(diǎn)設(shè)是C′,則AC′=AC=2,則OC′=3,故C′的坐標(biāo)是(3,0).故選B.考點(diǎn):坐標(biāo)與圖形變化-旋轉(zhuǎn).二、填空題(共7小題,每小題3分,滿分21分)11、4.【解析】
過(guò)E作EG⊥AF,交FA的延長(zhǎng)線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時(shí),AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時(shí),AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過(guò)E作EG⊥AF,交FA的延長(zhǎng)線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當(dāng)AD⊥BC時(shí),AD最短,
∵BC=7,△ABC的面積為14,
∴當(dāng)AD⊥BC時(shí),,即:,∴.
∴△AEF的面積最小值為:
AF×EG=×4×2=4,故答案為:4.【點(diǎn)睛】本題主要考查了折疊問(wèn)題,解題的關(guān)鍵是利用對(duì)應(yīng)邊和對(duì)應(yīng)角相等.12、3.【解析】
可以先由韋達(dá)定理得出兩個(gè)關(guān)于、的式子,題目中的式子變形即可得出相應(yīng)的與韋達(dá)定理相關(guān)的式子,即可求解.【詳解】得+=-2m-3,=m2,又因?yàn)?,所以m2-2m-3=0,得m=3或m=-1,因?yàn)橐辉畏匠痰膬蓚€(gè)不相等的實(shí)數(shù)根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式相結(jié)合解題是解決本題的關(guān)鍵.13、﹣a【解析】,..14、2.1或2【解析】
在Rt△ACB中,根據(jù)勾股定理可求AB的長(zhǎng),根據(jù)折疊的性質(zhì)可得QD=BD,QP=BP,根據(jù)三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據(jù)勾股定理可求QP,繼而可求得答案.【詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折疊的性質(zhì)可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中點(diǎn),
∴DE=AC=3,BD=AB=1,BE=BC=4,
①當(dāng)點(diǎn)P在DE右側(cè)時(shí),
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
則BP=2.1.
②當(dāng)點(diǎn)P在DE左側(cè)時(shí),同①知,BP=2
故答案為:2.1或2.【點(diǎn)睛】考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.15、5或1.【解析】
先依據(jù)勾股定理求得AB的長(zhǎng),然后由翻折的性質(zhì)可知:AB′=5,DB=DB′,接下來(lái)分為∠B′DE=90°和∠B′ED=90°,兩種情況畫(huà)出圖形,設(shè)DB=DB′=x,然后依據(jù)勾股定理列出關(guān)于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當(dāng)∠B′DE=90°時(shí),過(guò)點(diǎn)B′作B′F⊥AF,垂足為F.設(shè)BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當(dāng)∠B′ED=90°時(shí),C與點(diǎn)E重合.∵AB′=5,AC=6,∴B′E=5.設(shè)BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長(zhǎng)為5或1.16、﹣4<x<﹣【解析】根據(jù)函數(shù)的圖像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函數(shù)y=kx+b的下面,且它們的值小于0的解集是﹣4<x<﹣.故答案為﹣4<x<﹣.17、【解析】=2()=.故答案為.三、解答題(共7小題,滿分69分)18、(1)60,30;;(2)300;(3)【解析】
(1)由了解很少的有30人,占50%,可求得接受問(wèn)卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角;(2)利用樣本估計(jì)總體的方法,即可求得答案;(3)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問(wèn)卷調(diào)查的學(xué)生共有:30÷50%=60(人);∵了解部分的人數(shù)為60﹣(15+30+10)=5,∴扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為:×360°=30°;故答案為60,30;(2)根據(jù)題意得:900×=300(人),則估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人,故答案為300;(3)畫(huà)樹(shù)狀圖如下:所有等可能的情況有6種,其中抽到女生A的情況有2種,所以P(抽到女生A)==.【點(diǎn)睛】此題考查了列表法或樹(shù)狀圖法求概率以及條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)y=12x2-x-4(2)點(diǎn)M的坐標(biāo)為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-4),然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;
(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,12m2-m-4.由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最?。甋四邊形OAMC=S△OAM(3)拋物線的對(duì)稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以C1(2,-4).連接CC1,過(guò)C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點(diǎn)Pn,12n2-n-4,過(guò)P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點(diǎn)M的坐標(biāo)為m,1由題意知,當(dāng)四邊形OAMC面積最大時(shí),陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當(dāng)m=2時(shí),四邊形OAMC面積最大,此時(shí)陰影部分面積最小,所以點(diǎn)M的坐標(biāo)為(2,-4).(3)∵拋物線的對(duì)稱軸為直線x=1,點(diǎn)C與點(diǎn)C1關(guān)于拋物線的對(duì)稱軸對(duì)稱,所以C1(2,-4).連接CC1,過(guò)C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點(diǎn)Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點(diǎn)P的橫坐標(biāo)為-83或-4【點(diǎn)睛】本題考核知識(shí)點(diǎn):二次函數(shù)綜合運(yùn)用.解題關(guān)鍵點(diǎn):熟記二次函數(shù)的性質(zhì),數(shù)形結(jié)合,由所求分析出必知條件.20、(1)a=;(2)①x=2;②拋物線的頂點(diǎn)的縱坐標(biāo)為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】
(1)把原點(diǎn)坐標(biāo)代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點(diǎn)式,即可得到拋物線的對(duì)稱軸和拋物線的頂點(diǎn)的縱坐標(biāo);(3)設(shè)A(m,1),B(n,1),利用拋物線與x軸的交點(diǎn)問(wèn)題,則m、n為方程ax2﹣4ax+3a﹣2=1的兩根,利用判別式的意義解得a>1或a<﹣2,再利用根與系數(shù)的關(guān)系得到m+n=4,mn=,然后根據(jù)完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4?≤16,接著解關(guān)于a的不等式,最后確定a的范圍.【詳解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,拋物線的對(duì)稱軸為直線x=2;②拋物線的頂點(diǎn)的縱坐標(biāo)為﹣a﹣2;(3)設(shè)A(m,1),B(n,1),∵m、n為方程ax2﹣4ax+3a﹣2=1的兩根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4?≤16,即≥1,解得a≥或a<1.∴a的范圍為a<﹣2或a≥.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠1)與x軸的交點(diǎn)坐標(biāo)問(wèn)題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).21、(1)5,20,80;(2)圖見(jiàn)解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補(bǔ)全條形圖;(5)畫(huà)樹(shù)狀圖可得所有可能的情況,根據(jù)樹(shù)狀圖求得2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果,根據(jù)概率公式進(jìn)行計(jì)算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計(jì)全校學(xué)生中有80人喜歡籃球項(xiàng)目;(4)如圖所示,(5)畫(huà)樹(shù)狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果數(shù)為12,所以所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率=.22、(1)詳見(jiàn)解析;(2)菱形;(3)當(dāng)∠A=45°,四邊形BECD是正方形.【解析】
(1)先求出四邊形AD
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年拍賣(mài)師資格考試題庫(kù)大全(含答案)
- 2024年企業(yè)人力資源管理師(三級(jí))考前沖刺備考速記速練300題(含答案)
- 2025年度個(gè)人科技產(chǎn)品代理傭金協(xié)議
- 2025年度鋼材貿(mào)易結(jié)算與融資服務(wù)合同
- 2025年度個(gè)人債務(wù)轉(zhuǎn)讓與債務(wù)清理執(zhí)行協(xié)議4篇
- 網(wǎng)絡(luò)素養(yǎng)教育與小學(xué)生信息保護(hù)
- 二零二五年度新型建筑材料OEM研發(fā)與市場(chǎng)推廣協(xié)議3篇
- 2025年度個(gè)人地皮使用權(quán)轉(zhuǎn)讓與土地增值收益分配協(xié)議2篇
- 二零二五年度金融科技產(chǎn)品安全審查合同3篇
- 科技驅(qū)動(dòng)的綠色家居裝飾材料
- 七年級(jí)下冊(cè)-備戰(zhàn)2024年中考?xì)v史總復(fù)習(xí)核心考點(diǎn)與重難點(diǎn)練習(xí)(統(tǒng)部編版)
- 2024年佛山市勞動(dòng)合同條例
- 污水管網(wǎng)規(guī)劃建設(shè)方案
- 城鎮(zhèn)智慧排水系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 采購(gòu)管理制度及流程采購(gòu)管理制度及流程
- 新修訂藥品GMP中藥飲片附錄解讀課件
- 五年級(jí)美術(shù)下冊(cè)第9課《寫(xiě)意蔬果》-優(yōu)秀課件4人教版
- 節(jié)能降耗課件
- 尼爾森數(shù)據(jù)市場(chǎng)分析報(bào)告
- 氧氣霧化吸入法
- 領(lǐng)導(dǎo)干部個(gè)人有關(guān)事項(xiàng)報(bào)告表(模板)
評(píng)論
0/150
提交評(píng)論