版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省棗強(qiáng)中學(xué)2023-2024學(xué)年高三下學(xué)期動(dòng)態(tài)性教學(xué)質(zhì)量檢測(cè)試題考前適應(yīng)卷數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則()A. B. C. D.2.如圖,在平行四邊形中,對(duì)角線與交于點(diǎn),且,則()A. B.C. D.3.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]4.設(shè)函數(shù)的定義域?yàn)?,滿足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是().A. B. C. D.5.已知函數(shù)(表示不超過(guò)x的最大整數(shù)),若有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B. C. D.6.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.7.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.8.生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為()A. B. C. D.9.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.11.過(guò)直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對(duì)稱時(shí),()A. B. C. D.12.已知復(fù)數(shù),則的虛部是()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.14.某公園劃船收費(fèi)標(biāo)準(zhǔn)如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時(shí)間均為1小時(shí),每只租船必須坐滿,租船最低總費(fèi)用為_(kāi)_____元,租船的總費(fèi)用共有_____種可能.15.已知二項(xiàng)式ax-1x6的展開(kāi)式中的常數(shù)項(xiàng)為-16016.設(shè)是公差不為0的等差數(shù)列的前項(xiàng)和,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓經(jīng)過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),若,在線段上取點(diǎn),使,求證:點(diǎn)在定直線上.18.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.19.(12分)記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且直線的斜率為1,當(dāng)直線過(guò)點(diǎn)時(shí),.(1)求拋物線的方程;(2)若,直線與交于點(diǎn),,求直線的斜率.20.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.21.(12分)已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率(1)求橢圓的方程;(2)設(shè)分別為橢圓與軸正半軸和軸正半軸的交點(diǎn),是橢圓上在第一象限的一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn),問(wèn)與面積之差是否為定值?說(shuō)明理由.22.(10分)為迎接2022年冬奧會(huì),北京市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問(wèn)題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無(wú)窮多組,在解決具體問(wèn)題時(shí),合理選擇基底會(huì)給解題帶來(lái)方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.3、B【解析】
作出可行域,對(duì)t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.4、B【解析】
求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),,,,又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.5、A【解析】
根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個(gè)不同的交點(diǎn),利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,若有且僅有3個(gè)零點(diǎn),則等價(jià)為有且僅有3個(gè)根,即與有三個(gè)不同的交點(diǎn),作出函數(shù)和的圖象如圖,當(dāng)a=1時(shí),與有無(wú)數(shù)多個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即,時(shí),與有兩個(gè)交點(diǎn),當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),即時(shí),與有三個(gè)交點(diǎn),要使與有三個(gè)不同的交點(diǎn),則直線處在過(guò)和之間,即,故選:A.【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.6、C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長(zhǎng)度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過(guò)作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問(wèn)題,求解幾何體外接球相關(guān)問(wèn)題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.7、B【解析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域?yàn)?,所以不合題意;選項(xiàng),計(jì)算,不符合函數(shù)圖象;對(duì)于選項(xiàng),與函數(shù)圖象不一致;選項(xiàng)符合函數(shù)圖象特征.故選:B【點(diǎn)睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見(jiàn)方法為排除法.8、C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)的事件個(gè)數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時(shí),禮和樂(lè)相鄰有4種情況,禮和樂(lè)順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時(shí),禮和樂(lè)相鄰有3種情況,禮和樂(lè)順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點(diǎn)睛】解排列組合問(wèn)題要遵循兩個(gè)原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過(guò)程進(jìn)行分步.具體地說(shuō),解排列組合問(wèn)題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).9、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.10、B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問(wèn)題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問(wèn)題.11、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對(duì)稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對(duì)稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對(duì)稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對(duì)稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.12、C【解析】
化簡(jiǎn)復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點(diǎn)睛】本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.14、36010【解析】
列出所有租船的情況,分別計(jì)算出租金,由此能求出結(jié)果.【詳解】當(dāng)租兩人船時(shí),租金為:元,當(dāng)租四人船時(shí),租金為:元,當(dāng)租1條四人船6條兩人船時(shí),租金為:元,當(dāng)租2條四人船4條兩人船時(shí),租金為:元,當(dāng)租3條四人船2條兩人船時(shí),租金為:元,當(dāng)租1條六人船5條2人船時(shí),租金為:元,當(dāng)租2條六人船2條2人船時(shí),租金為:元,當(dāng)租1條六人船1條四人船3條2人船時(shí),租金為:元,當(dāng)租1條六人船2條四人船1條2人船時(shí),租金為:元,當(dāng)租2條六人船1條四人船時(shí),租金為:元,綜上,租船最低總費(fèi)用為360元,租船的總費(fèi)用共有10種可能.故答案為:360,10.【點(diǎn)睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實(shí)際應(yīng)用問(wèn)題,屬于基礎(chǔ)題.15、2【解析】
在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.16、18【解析】
先由,可得,再結(jié)合等差數(shù)列的前項(xiàng)和公式求解即可.【詳解】解:因?yàn)?,所以?故答案為:18.【點(diǎn)睛】本題考查了等差數(shù)列基本量的運(yùn)算,重點(diǎn)考查了等差數(shù)列的前項(xiàng)和公式,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析.【解析】
(1)根據(jù)題意得出關(guān)于、、的方程組,解出、的值,進(jìn)而可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、、,設(shè)直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達(dá)定理,由向量的坐標(biāo)運(yùn)算可求得點(diǎn)的坐標(biāo)表達(dá)式,并代入韋達(dá)定理,消去,可得出點(diǎn)的橫坐標(biāo),進(jìn)而可得出結(jié)論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設(shè)直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點(diǎn)在定直線上.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了點(diǎn)在定直線上的證明,考查計(jì)算能力與推理能力,屬于中等題.18、(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫?,所以平面平?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題19、(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長(zhǎng)公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點(diǎn)的縱坐標(biāo)為,然后直線的方程與直線的方程聯(lián)立解得交點(diǎn)H的縱坐標(biāo),說(shuō)明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因?yàn)橹本€的斜率為1,則,所以,因?yàn)?,所以線段中點(diǎn)的縱坐標(biāo)為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點(diǎn)的縱坐標(biāo)為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.【點(diǎn)睛】本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 13-14-Dihydro-15-keto-tetranor-prostaglandin-F1β-生命科學(xué)試劑-MCE-3578
- 2025年度智能家居安防裝飾家居裝修合同
- 二零二五年度同居關(guān)系解除并處理共同財(cái)產(chǎn)合同
- 2025年度鋼琴制作工藝技術(shù)研究與應(yīng)用合同
- 2025年度海鮮池養(yǎng)殖產(chǎn)業(yè)鏈整合承包協(xié)議
- 教育創(chuàng)新在展館空間設(shè)計(jì)中的體現(xiàn)
- 解讀中藥藥理優(yōu)化日常養(yǎng)生
- 個(gè)人商業(yè)貸款保證擔(dān)保合同
- 中央空調(diào)維護(hù)合同范本
- 個(gè)人經(jīng)營(yíng)性貸款借款合同樣本
- 中國(guó)氫內(nèi)燃機(jī)行業(yè)發(fā)展環(huán)境、市場(chǎng)運(yùn)行格局及前景研究報(bào)告-智研咨詢(2024版)
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫(kù)含答案解析
- 上海鐵路局招聘筆試沖刺題2025
- 《商用車預(yù)見(jiàn)性巡航系統(tǒng)技術(shù)規(guī)范》
- 中日合同范本
- T-CARM 002-2023 康復(fù)醫(yī)院建設(shè)標(biāo)準(zhǔn)
- SJG 112-2022 既有建筑幕墻安全性鑒定技術(shù)標(biāo)準(zhǔn)高清最新版
- 旅游文本的翻譯課件
- 最全新能源材料-鋰離子電池材料189張課件
- 立式加工中心說(shuō)明書
- 第八版神經(jīng)病學(xué)配套課件-12-中樞神經(jīng)系統(tǒng)感染性疾病
評(píng)論
0/150
提交評(píng)論