![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第8章第06講 雙曲線及其性質(zhì)(練習(xí))(原卷版)_第1頁(yè)](http://file4.renrendoc.com/view9/M03/29/1E/wKhkGWdGdsCANlGHAAGxzFdE9OY205.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第8章第06講 雙曲線及其性質(zhì)(練習(xí))(原卷版)_第2頁(yè)](http://file4.renrendoc.com/view9/M03/29/1E/wKhkGWdGdsCANlGHAAGxzFdE9OY2052.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第8章第06講 雙曲線及其性質(zhì)(練習(xí))(原卷版)_第3頁(yè)](http://file4.renrendoc.com/view9/M03/29/1E/wKhkGWdGdsCANlGHAAGxzFdE9OY2053.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第8章第06講 雙曲線及其性質(zhì)(練習(xí))(原卷版)_第4頁(yè)](http://file4.renrendoc.com/view9/M03/29/1E/wKhkGWdGdsCANlGHAAGxzFdE9OY2054.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第8章第06講 雙曲線及其性質(zhì)(練習(xí))(原卷版)_第5頁(yè)](http://file4.renrendoc.com/view9/M03/29/1E/wKhkGWdGdsCANlGHAAGxzFdE9OY2055.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第06講雙曲線及其性質(zhì)(模擬精練+真題演練)1.(2023·四川成都·校聯(lián)考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0的右焦點(diǎn)為F,過(guò)點(diǎn)F作一條漸近線的垂線,垂足為P,O為坐標(biāo)原點(diǎn),則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·福建福州·福建省福州第一中學(xué)??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0,過(guò)E的右頂點(diǎn)A且與一條漸近線平行的直線交y軸于點(diǎn)B,SKIPIF1<0的面積為2,則E的焦距為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<03.(2023·貴州黔東南·凱里一中校考模擬預(yù)測(cè))已知A,B分別是雙曲線SKIPIF1<0的左、右頂點(diǎn),F(xiàn)是C的焦點(diǎn),點(diǎn)P為C的右支上位于第一象限的點(diǎn),且SKIPIF1<0軸.若直線PB與直線PA的斜率之比為3,則C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.34.(2023·陜西西安·陜西師大附中??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0且垂直于SKIPIF1<0軸的直線與該雙曲線的左支交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,則當(dāng)SKIPIF1<0取得最大值時(shí),該雙曲線的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2023·四川成都·模擬預(yù)測(cè))已知SKIPIF1<0、SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點(diǎn),且SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線右支上一點(diǎn),SKIPIF1<0為SKIPIF1<0內(nèi)心,若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2023·四川南充·統(tǒng)考三模)已知點(diǎn)F是雙曲線SKIPIF1<0(SKIPIF1<0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若SKIPIF1<0是銳角三角形,則該雙曲線的離心率e的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2023·江西南昌·南昌市八一中學(xué)??既#┮阎p曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,若在SKIPIF1<0上存在點(diǎn)SKIPIF1<0不是頂點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2023·福建福州·福州四中校考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0為左焦點(diǎn),SKIPIF1<0分別為左?左頂點(diǎn),SKIPIF1<0為SKIPIF1<0右支上的點(diǎn),且SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)).若直線SKIPIF1<0與以線段SKIPIF1<0為直徑的圓相交,則SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2023·貴州畢節(jié)·??寄M預(yù)測(cè))如圖,雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0與雙曲線的兩條漸近線分別交于SKIPIF1<0兩點(diǎn).若SKIPIF1<0是SKIPIF1<0的中點(diǎn),且SKIPIF1<0,則此雙曲線的離心率為(
)
A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<010.(2023·福建福州·福建省福州第一中學(xué)校考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的左焦點(diǎn).經(jīng)過(guò)原點(diǎn)的直線SKIPIF1<0與SKIPIF1<0的左、右兩支分別交于A,SKIPIF1<0兩點(diǎn),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的一條漸近線的傾斜角可以是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.(多選題)(2023·山西陽(yáng)泉·統(tǒng)考三模)已知方程SKIPIF1<0,其中SKIPIF1<0,現(xiàn)有四位同學(xué)對(duì)該方程進(jìn)行了判斷,提出了四個(gè)命題,其中真命題有:(
)A.可以是圓的方程 B.一定不能是拋物線的方程C.可以是橢圓的標(biāo)準(zhǔn)方程 D.一定不能是雙曲線的標(biāo)準(zhǔn)方程12.(多選題)(2023·福建泉州·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0分別是雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0是該雙曲線的一條漸近線上的一點(diǎn),并且以線段SKIPIF1<0為直徑的圓經(jīng)過(guò)點(diǎn)SKIPIF1<0,則(
)A.SKIPIF1<0的面積為SKIPIF1<0 B.點(diǎn)SKIPIF1<0的橫坐標(biāo)為2或SKIPIF1<0C.SKIPIF1<0的漸近線方程為SKIPIF1<0 D.以線段SKIPIF1<0為直徑的圓的方程為SKIPIF1<013.(多選題)(2023·廣東深圳·統(tǒng)考二模)如圖,雙曲線SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,過(guò)SKIPIF1<0向圓SKIPIF1<0作一條切線SKIPIF1<0與漸近線SKIPIF1<0和SKIPIF1<0分別交于點(diǎn)SKIPIF1<0(SKIPIF1<0恰好為切點(diǎn),且是漸近線與圓的交點(diǎn)),設(shè)雙曲線的離心率為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),下列結(jié)論正確的是(
)
A.SKIPIF1<0B.SKIPIF1<0C.當(dāng)點(diǎn)SKIPIF1<0在第一象限時(shí),SKIPIF1<0D.當(dāng)點(diǎn)SKIPIF1<0在第三象限時(shí),SKIPIF1<014.(多選題)(2023·廣東佛山·統(tǒng)考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0:SKIPIF1<0上、下焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,虛軸長(zhǎng)為SKIPIF1<0,SKIPIF1<0是雙曲線上支上任意一點(diǎn),SKIPIF1<0的最小值為SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是直線SKIPIF1<0上的動(dòng)點(diǎn),直線SKIPIF1<0,SKIPIF1<0分別與E的上支交于點(diǎn)SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0.下列說(shuō)法中正確的是(
)A.雙曲線SKIPIF1<0的方程為SKIPIF1<0 B.SKIPIF1<0C.以SKIPIF1<0為直徑的圓經(jīng)過(guò)SKIPIF1<0點(diǎn) D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0平行于SKIPIF1<0軸15.(多選題)(2023·廣東茂名·茂名市第一中學(xué)??既#┪覈?guó)首先研制成功的“雙曲線新聞燈”,如圖,利用了雙曲線的光學(xué)性質(zhì):SKIPIF1<0,SKIPIF1<0是雙曲線的左?右焦點(diǎn),從SKIPIF1<0發(fā)出的光線SKIPIF1<0射在雙曲線右支上一點(diǎn)SKIPIF1<0,經(jīng)點(diǎn)SKIPIF1<0反射后,反射光線的反向延長(zhǎng)線過(guò)SKIPIF1<0;當(dāng)SKIPIF1<0異于雙曲線頂點(diǎn)時(shí),雙曲線在點(diǎn)SKIPIF1<0處的切線平分SKIPIF1<0.若雙曲線SKIPIF1<0的方程為SKIPIF1<0,則下列結(jié)論正確的是(
)
A.射線SKIPIF1<0所在直線的斜率為SKIPIF1<0,則SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0時(shí),光線由SKIPIF1<0到SKIPIF1<0再到SKIPIF1<0所經(jīng)過(guò)的路程為13D.若點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0相切,則SKIPIF1<016.(多選題)(2023·廣東廣州·華南師大附中校考三模)在平面直角坐標(biāo)系SKIPIF1<0中,雙曲線SKIPIF1<0:SKIPIF1<0的下、上焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,漸近線方程為SKIPIF1<0,SKIPIF1<0為雙曲線SKIPIF1<0上任意一點(diǎn),SKIPIF1<0平分SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則(
)A.雙曲線SKIPIF1<0的離心率為SKIPIF1<0B.雙曲線SKIPIF1<0的方程為SKIPIF1<0C.若直線SKIPIF1<0與雙曲線SKIPIF1<0的另一個(gè)交點(diǎn)為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0D.點(diǎn)SKIPIF1<0到兩條漸近線的距離之積為SKIPIF1<017.(多選題)(2023·遼寧錦州·渤海大學(xué)附屬高級(jí)中學(xué)??寄M預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0與雙曲線SKIPIF1<0:SKIPIF1<0的公共焦點(diǎn),SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0與SKIPIF1<0的離心率,且P是SKIPIF1<0與SKIPIF1<0的一個(gè)公共點(diǎn),滿足SKIPIF1<0,則下列結(jié)論中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的最大值為SKIPIF1<018.(2023·貴州畢節(jié)·??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,存在過(guò)點(diǎn)SKIPIF1<0的直線與雙曲線SKIPIF1<0的右支交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0為正三角形.試寫出一個(gè)滿足上述條件的雙曲線SKIPIF1<0的方程:.19.(2023·福建三明·統(tǒng)考三模)古希臘數(shù)學(xué)家托勒密在他的名著《數(shù)學(xué)匯編》,里給出了托勒密定理,即任意凸四邊形中,兩條對(duì)角線的乘積小于等于兩組對(duì)邊的乘積之和,當(dāng)且僅當(dāng)凸四邊形的四個(gè)頂點(diǎn)同在一個(gè)圓上時(shí)等號(hào)成立.已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,雙曲線C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率.20.(2023·河南開封·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0是雙曲線SKIPIF1<0的右頂點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0為SKIPIF1<0的左焦點(diǎn),若SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的離心率為.21.(2023·四川成都·校聯(lián)考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0:SKIPIF1<0的右焦點(diǎn)為F,過(guò)點(diǎn)F作一條漸近線的垂線,垂足為P,點(diǎn)Q為線段PF的中點(diǎn),SKIPIF1<0,O為坐標(biāo)原點(diǎn),且點(diǎn)E在雙曲線SKIPIF1<0上,則SKIPIF1<0.22.(2023·江西贛州·統(tǒng)考模擬預(yù)測(cè))已知雙曲線C:SKIPIF1<0,過(guò)雙曲線C的右焦點(diǎn)F作直線SKIPIF1<0交雙曲線C的漸近線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,點(diǎn)B在第四象限,且滿足SKIPIF1<0,SKIPIF1<0,則雙曲線C的離心率為.23.(2023·四川綿陽(yáng)·統(tǒng)考二模)已知雙曲線C的方程為:SKIPIF1<0,離心率為SKIPIF1<0,過(guò)C的右支上一點(diǎn)SKIPIF1<0,作兩條漸近線的平行線,分別交x軸于M,N兩點(diǎn),且SKIPIF1<0.過(guò)點(diǎn)P作SKIPIF1<0的角平分線,SKIPIF1<0在角平分線上的投影為點(diǎn)H,則SKIPIF1<0的最大值為.1.(2021?甲卷)點(diǎn)SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線的距離為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021?天津)已知雙曲線SKIPIF1<0的右焦點(diǎn)與拋物線SKIPIF1<0的焦點(diǎn)重合,拋物線的準(zhǔn)線交雙曲線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交雙曲線的漸近線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則雙曲線的離心率為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.33.(2021?北京)雙曲線SKIPIF1<0的離心率為2,且過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,則雙曲線的方程為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(多選題)(2022?乙卷)雙曲線SKIPIF1<0的兩個(gè)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,以SKIPIF1<0的實(shí)軸為直徑的圓記為SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0的切線與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0,則SKIPIF1<0的離心率為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2023?北京)已知雙曲線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0和SKIPIF1<0,離心率為SKIPIF1<0,則SKIPIF1<0的方程為.6.(2023?新高考Ⅰ)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.點(diǎn)SKIPIF1<0在SKIPIF1<0上,點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的離心率為.7.(2022?甲卷)記雙曲線SKIPIF1<0的離心率為SKIPIF1<0,寫出滿足條件“直線SKIPIF1<0與SKIPIF1<0無(wú)公共點(diǎn)”的SKIPIF1<0的一個(gè)值.8.(2022?甲卷)若雙曲線SKIPIF1<0的漸近線與圓SKIPIF1<0相切,則SKIPIF1<0.9.(2022?浙江)已知雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,過(guò)SKIPIF1<0且斜率為SKIPIF1<0的直線交雙曲線于點(diǎn)SKIPIF1<0,SKIPIF1<0,交雙曲線的漸近線于點(diǎn)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0.若SKIPIF1<0,則雙曲線的離心率是.10.(2022?北京)已知雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,則SKIPIF1<0.11.(2021?乙卷)已知雙曲線SKIPIF1<0的一條漸近線為SKIPIF1<0,則SKIPIF1<0的焦距為.12.(2021?乙卷)雙曲線SKIPIF1<0的右焦點(diǎn)到直線SKIPIF1<0的距離為.13.(2021?新高考Ⅱ)已知雙曲線SKIPIF1<0的離心率SKIPIF1<0,則該雙曲線的漸近線方程為.14.(2021?全國(guó))雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值為.15.(2023?新高考Ⅱ)已知雙曲線SKIPIF1<0中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)記SKIPIF1<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產(chǎn)現(xiàn)場(chǎng)標(biāo)準(zhǔn)化與安全管理的融合策略
- 環(huán)境藝術(shù)與隔音措施的心理舒適聯(lián)合影響
- 生產(chǎn)流程中的數(shù)據(jù)驅(qū)動(dòng)決策優(yōu)化實(shí)踐
- 2024年學(xué)年七年級(jí)語(yǔ)文下冊(cè) 合作之歌 第15課《“文房四寶”的風(fēng)波》說(shuō)課稿 新疆教育版
- 2024年五年級(jí)數(shù)學(xué)下冊(cè) 七 包裝盒-長(zhǎng)方體和正方體 我學(xué)會(huì)了嗎說(shuō)課稿 青島版六三制
- 9小水滴的訴說(shuō)(說(shuō)課稿)-2023-2024學(xué)年統(tǒng)編版道德與法治二年級(jí)下冊(cè)
- 現(xiàn)代科技在大學(xué)食堂食品安全管理中的應(yīng)用
- 現(xiàn)代物流裝備的智能化與高效化探討
- 汽車配件電商平臺(tái)品牌塑造的路徑
- 生物質(zhì)能源開發(fā)與辦公環(huán)境的綠色化
- 康復(fù)醫(yī)院患者隱私保護(hù)管理制度
- 新課標(biāo)I、Ⅱ卷 (2024-2020) 近五年高考英語(yǔ)真題滿分作文
- 浙江省嘉興市2023-2024學(xué)年六年級(jí)(上)期末數(shù)學(xué)試卷
- 子宮脫垂手術(shù)指南
- 沈陽(yáng)理工大學(xué)《數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- DB41T 2231-2022 水利工程生態(tài)護(hù)坡技術(shù)規(guī)范
- 共享單車安全知識(shí)
- 渤海大學(xué)《大數(shù)據(jù)分析與實(shí)踐》2023-2024學(xué)年期末試卷
- 2024版2024年《咚咚鏘》中班音樂(lè)教案
- 北京三甲中醫(yī)疼痛科合作方案
- QCT957-2023洗掃車技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論