版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第七章立體幾何與空間向量(測(cè)試)時(shí)間:120分鐘分值:150分第Ⅰ卷一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.(2023·湖北·高三校聯(lián)考階段練習(xí))已知圓臺(tái)上下底面半徑之比為SKIPIF1<0,母線與底面所成的角的正弦值為SKIPIF1<0,圓臺(tái)體積為SKIPIF1<0,則該圓臺(tái)的側(cè)面面積為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】做出圓臺(tái)的軸截面如圖所示,設(shè)上底面半徑為SKIPIF1<0,則下底面半徑為SKIPIF1<0,作SKIPIF1<0,垂足為SKIPIF1<0,則SKIPIF1<0,母線與底面所成的角的正弦值為SKIPIF1<0,即SKIPIF1<0,設(shè)圓臺(tái)的母線長(zhǎng)為SKIPIF1<0,高為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因?yàn)閳A臺(tái)的體積為SKIPIF1<0,由圓臺(tái)的體積公式SKIPIF1<0,計(jì)算得SKIPIF1<0,所以SKIPIF1<0.再由圓臺(tái)側(cè)面積公式SKIPIF1<0,可得圓臺(tái)的側(cè)面積為SKIPIF1<0.故選:C.2.(2023·甘肅天水·高三校考階段練習(xí))設(shè)SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.4【答案】C【解析】由向量SKIPIF1<0SKIPIF1<0SKIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:C.3.(2023·北京·高三強(qiáng)基計(jì)劃)設(shè)SKIPIF1<0,則V的體積為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)題意,V是由SKIPIF1<0四點(diǎn)構(gòu)成的四面體SKIPIF1<0及其內(nèi)部,其體積為SKIPIF1<0.故選:D.4.(2023·陜西西安·統(tǒng)考一模)如圖,球面上有SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn),SKIPIF1<0,SKIPIF1<0,球心SKIPIF1<0到平面SKIPIF1<0的距離是SKIPIF1<0,則球SKIPIF1<0的體積是()
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0外接圓的直徑為SKIPIF1<0,所以,SKIPIF1<0,因此,球心SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,所以,球SKIPIF1<0的半徑為SKIPIF1<0,因此,球SKIPIF1<0的體積為SKIPIF1<0.故選:B.5.(2023·廣東廣州·高三華南師大附中??奸_(kāi)學(xué)考試)以下什么物體能被放進(jìn)底面半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱中(
)A.底面半徑為SKIPIF1<0,母線長(zhǎng)為SKIPIF1<0的圓錐B.底面半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱C.邊長(zhǎng)為SKIPIF1<0的立方體D.底面積為SKIPIF1<0,高為SKIPIF1<0的直三棱柱【答案】B【解析】由于SKIPIF1<0,故該圓錐無(wú)法放入圓柱中,A錯(cuò)誤;B選項(xiàng),如圖所示,將底面半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱放入半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱中,如圖所示,則SKIPIF1<0,因?yàn)镾KIPIF1<0,由勾股定理得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故能被放進(jìn)底面半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱中,B正確;C選項(xiàng),邊長(zhǎng)為SKIPIF1<0的立方體,面對(duì)角線長(zhǎng)為SKIPIF1<0,體對(duì)角線長(zhǎng)為SKIPIF1<0,要想放進(jìn)高為SKIPIF1<0的圓柱內(nèi),需要如圖所示放入,其外接球SKIPIF1<0的直徑為SKIPIF1<0,故要想放入圓柱中,只能放入以球SKIPIF1<0為內(nèi)切球的圓柱中,如圖,過(guò)點(diǎn)SKIPIF1<0的母線交上底面于點(diǎn)SKIPIF1<0,交下底面于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,由勾股定理得SKIPIF1<0,解得SKIPIF1<0,即邊長(zhǎng)為SKIPIF1<0的立方體可放入底面半徑為SKIPIF1<0,高為SKIPIF1<0的的圓柱中,因?yàn)镾KIPIF1<0,故C錯(cuò)誤;D選項(xiàng),底面積為SKIPIF1<0,高為SKIPIF1<0的直三棱柱體積為SKIPIF1<0,由于底面半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱體積為SKIPIF1<0,故無(wú)法放進(jìn)放進(jìn)底面半徑為SKIPIF1<0,高為SKIPIF1<0的圓柱中,D錯(cuò)誤.故選:B6.(2023·北京·高三強(qiáng)基計(jì)劃)在正方體SKIPIF1<0中,動(dòng)點(diǎn)M在底面SKIPIF1<0內(nèi)運(yùn)動(dòng)且滿足SKIPIF1<0,則動(dòng)點(diǎn)M在底面SKIPIF1<0內(nèi)的軌跡為()A.圓的一部分 B.橢圓的一部分C.雙曲線一支的一部分 D.前三個(gè)答案都不對(duì)【答案】A【解析】因?yàn)镾KIPIF1<0,故SKIPIF1<0在圓錐面上,該圓錐以SKIPIF1<0為軸,SKIPIF1<0為頂點(diǎn),而M在底面SKIPIF1<0內(nèi),故動(dòng)點(diǎn)M在底面SKIPIF1<0內(nèi)的軌跡是以D為圓心的四分之一圓弧SKIPIF1<0.故選:A.7.(2023·四川·校聯(lián)考一模)如圖,在棱長(zhǎng)為1的正方體SKIPIF1<0中,點(diǎn)P是線段SKIPIF1<0上的動(dòng)點(diǎn),下列說(shuō)法錯(cuò)誤的是()A.SKIPIF1<0平面SKIPIF1<0B.SKIPIF1<0C.異面直線AP與SKIPIF1<0所成的角的最小值為SKIPIF1<0D.三棱錐SKIPIF1<0的體積為定值【答案】C【解析】對(duì)于A,易知SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,同理SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,故A正確;對(duì)于B,易知SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,同理SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,故B正確;對(duì)于C,如圖所示:過(guò)點(diǎn)D作SKIPIF1<0,連AQ,知SKIPIF1<0就是異面直線AP與SKIPIF1<0所成的角的最小角,有SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,SKIPIF1<0,其中SKIPIF1<0是定值,面SKIPIF1<0平面SKIPIF1<0,知點(diǎn)P到面SKIPIF1<0的距離是一個(gè)定值.故D正確.故選:C8.(2023·四川綿陽(yáng)·高三綿陽(yáng)南山中學(xué)實(shí)驗(yàn)學(xué)校校考階段練習(xí))四面體ABCD的四個(gè)頂點(diǎn)都在球SKIPIF1<0的球面上,SKIPIF1<0,SKIPIF1<0,點(diǎn)E,F(xiàn),G分別為棱BC,CD,AD的中點(diǎn),現(xiàn)有如下結(jié)論:①過(guò)點(diǎn)E,F(xiàn),G作四面體ABCD的截面,則該截面的面積為2;②四面體ABCD的體積為SKIPIF1<0;③過(guò)SKIPIF1<0作球SKIPIF1<0的截面,則截面面積的最大值與最小值的比為5:4.則上述說(shuō)法正確的個(gè)數(shù)是()A.0 B.1 C.2 D.3【答案】C【解析】選項(xiàng)①中,如圖(1)所示,找SKIPIF1<0的中點(diǎn)SKIPIF1<0,過(guò)點(diǎn)E,F(xiàn),G做四面體ABCD的截面即為面SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,找SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0為矩形,SKIPIF1<0,SKIPIF1<0,所以截面的面積SKIPIF1<0,故①正確;選項(xiàng)②中,SKIPIF1<0中,由勾股定理得:SKIPIF1<0,同理SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,則SKIPIF1<0,所以由勾股定理得:SKIPIF1<0,所以SKIPIF1<0,由選項(xiàng)①可得:SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故②錯(cuò)誤;選項(xiàng)③中,可以將四面體放入如圖(2)所示的長(zhǎng)方體中,由題可求得,SKIPIF1<0,所以外接球的半徑SKIPIF1<0,截面面積的最大值為SKIPIF1<0;平面SKIPIF1<0截得的面積為最小面積,半徑SKIPIF1<0,截面積最小為SKIPIF1<0,所以截面面積的最大值與最小值的比為5:4,故③正確.圖(1)圖(2)二、選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分。9.(2023·全國(guó)·高三專題練習(xí))若點(diǎn)D,E,F(xiàn)分別為SKIPIF1<0的邊BC,CA,AB的中點(diǎn),且SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選項(xiàng)A正確;SKIPIF1<0,故選項(xiàng)B正確;SKIPIF1<0,SKIPIF1<0,故選項(xiàng)C正確;SKIPIF1<0,故選項(xiàng)D錯(cuò)誤.故選:SKIPIF1<0.10.(2023·吉林通化·梅河口市第五中學(xué)校考模擬預(yù)測(cè))如圖,四棱錐SKIPIF1<0的底面為梯形,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0的中點(diǎn),則()
A.SKIPIF1<0與平面SKIPIF1<0所成的角的余弦值為SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0平面SKIPIF1<0D.三棱錐SKIPIF1<0的體積為SKIPIF1<0【答案】CD【解析】對(duì)于A項(xiàng),如圖取AD中點(diǎn)F,連接EF,則EF∥PD,由題意可得:EF⊥面ABCD,連接CF,∠ECF即SKIPIF1<0與平面SKIPIF1<0所成的角,由條件可得EF=2,SKIPIF1<0,SKIPIF1<0,故A錯(cuò)誤;對(duì)于B項(xiàng),連接AC,易得SKIPIF1<0,又E為PA中點(diǎn),SKIPIF1<0,故PA與CE不垂直,故B錯(cuò)誤;對(duì)于C項(xiàng),如圖所示,在梯形ABCD中,過(guò)B作BG⊥CD,由條件可得,BG=AD=GC=2,故SKIPIF1<0,由勾股定理逆定理可得BD⊥BC,又PD⊥面ABCD,BCSKIPIF1<0面ABCD,則PD⊥BC,PDSKIPIF1<0BD=D,PD、BDSKIPIF1<0面ABCD,所以BC⊥面PBD,故C正確;對(duì)于D項(xiàng),由條件得SKIPIF1<0,由上可得SKIPIF1<0,故SKIPIF1<0,故D正確.故選:CD11.(2023·湖北·高三校聯(lián)考階段練習(xí))已知點(diǎn)P為正方體SKIPIF1<0底面ABCD的中心,用與直線SKIPIF1<0垂直的平面SKIPIF1<0截此正方體,所得截面可能是()A.三角形 B.四邊形 C.五邊形 D.六邊形【答案】ABC【解析】如圖,設(shè)棱長(zhǎng)為1,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,此時(shí)平面SKIPIF1<0就是滿足條件的一個(gè)SKIPIF1<0,此時(shí)所得截面為三角形SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0平移至點(diǎn)SKIPIF1<0,對(duì)應(yīng)的點(diǎn)SKIPIF1<0平移至點(diǎn)SKIPIF1<0(SKIPIF1<0分別是SKIPIF1<0的中點(diǎn)),形成平面SKIPIF1<0,此時(shí)截面為四邊形SKIPIF1<0,夾在平面SKIPIF1<0和平面SKIPIF1<0之間的形成五邊形SKIPIF1<0,如下圖,若截面在平面SKIPIF1<0下方時(shí),形成的截面為三角形,直至縮成一個(gè)點(diǎn),如下圖,若截面在平面SKIPIF1<0的上方時(shí),形成的截面為五邊形,如下圖,當(dāng)點(diǎn)SKIPIF1<0分別移到點(diǎn)SKIPIF1<0的位置,點(diǎn)SKIPIF1<0移到SKIPIF1<0的中點(diǎn)SKIPIF1<0位置,形成的截面為三角形SKIPIF1<0,再往上形成的截面也為三角形,直至縮成一個(gè)點(diǎn),如下圖,綜上可知,所的截面為三角形,四邊形,五邊形,沒(méi)有六邊形.故選:ABC12.(2023·湖南長(zhǎng)沙·高三周南中學(xué)??奸_(kāi)學(xué)考試)已知正方體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0為空間中任一點(diǎn),則下列結(jié)論中正確的是()A.若SKIPIF1<0為線段SKIPIF1<0上任一點(diǎn),則SKIPIF1<0與SKIPIF1<0所成角的范圍為SKIPIF1<0B.若SKIPIF1<0在正方形SKIPIF1<0內(nèi)部,且SKIPIF1<0,則點(diǎn)SKIPIF1<0軌跡的長(zhǎng)度為SKIPIF1<0C.若SKIPIF1<0為正方形SKIPIF1<0的中心,則三棱錐SKIPIF1<0外接球的體積為SKIPIF1<0D.若三棱錐SKIPIF1<0的體積為SKIPIF1<0恒成立,點(diǎn)SKIPIF1<0的軌跡為橢圓或部分橢圓【答案】ABD【解析】對(duì)于A,當(dāng)SKIPIF1<0與SKIPIF1<0不重合時(shí),過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,如圖,由SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0,有SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0與SKIPIF1<0所成的角,SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0由點(diǎn)SKIPIF1<0向點(diǎn)SKIPIF1<0移動(dòng)過(guò)程中,SKIPIF1<0逐漸增大,SKIPIF1<0逐漸減小,則SKIPIF1<0逐漸增大,因此SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0與點(diǎn)SKIPIF1<0重合時(shí),有SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0所成角的范圍為SKIPIF1<0,A正確;對(duì)于B,由SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0是直角三角形,SKIPIF1<0,如圖,點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,SKIPIF1<0為半徑的SKIPIF1<0圓?。ú缓〉亩它c(diǎn)),軌跡長(zhǎng)度為SKIPIF1<0,B正確;對(duì)于C,連接SKIPIF1<0,連接SKIPIF1<0,如圖,顯然SKIPIF1<0分別為SKIPIF1<0中點(diǎn),則SKIPIF1<0,因此點(diǎn)SKIPIF1<0是三棱錐SKIPIF1<0外接球球心,球半徑為SKIPIF1<0,體積為SKIPIF1<0,C錯(cuò)誤;對(duì)于D,連接SKIPIF1<0,如圖,SKIPIF1<0,SKIPIF1<0面積SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,由三棱錐SKIPIF1<0的體積為SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,于是SKIPIF1<0,同理SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,從而SKIPIF1<0平面SKIPIF1<0,同理SKIPIF1<0平面SKIPIF1<0,則平面SKIPIF1<0平面SKIPIF1<0,三棱錐SKIPIF1<0的體積SKIPIF1<0,于是點(diǎn)SKIPIF1<0到平面SKIPIF1<0距離為SKIPIF1<0,同理點(diǎn)SKIPIF1<0到平面SKIPIF1<0距離為SKIPIF1<0,又SKIPIF1<0,即平面SKIPIF1<0與平面SKIPIF1<0的距離為SKIPIF1<0,因此點(diǎn)SKIPIF1<0在平面SKIPIF1<0上或在過(guò)點(diǎn)SKIPIF1<0與平面SKIPIF1<0平行的平面SKIPIF1<0上,令SKIPIF1<0與平面SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0,于是直線SKIPIF1<0與平面SKIPIF1<0所成角的余弦SKIPIF1<0,即直線SKIPIF1<0與平面SKIPIF1<0所成角大于SKIPIF1<0,則點(diǎn)SKIPIF1<0在平面SKIPIF1<0上,由SKIPIF1<0,得點(diǎn)SKIPIF1<0在以直線SKIPIF1<0為軸,SKIPIF1<0為頂點(diǎn),軸截面頂角為SKIPIF1<0的圓錐側(cè)面上(除頂點(diǎn)外),顯然點(diǎn)P的軌跡是平面SKIPIF1<0與上述圓錐側(cè)面的交線,所以平面SKIPIF1<0截上述圓錐側(cè)面為橢圓,D正確.故選:ABD第Ⅱ卷三、填空題:本題共4小題,每小題5分,共20分。13.(2023·廣東揭陽(yáng)·高三??奸_(kāi)學(xué)考試)一個(gè)球被平面截下的部分叫做球缺,截面叫做球缺的底面,球缺的曲面部分叫做球冠,垂直于截面的直徑被截后的線段叫做球缺的高.球缺的體積公式為SKIPIF1<0,其中SKIPIF1<0為球的半徑,SKIPIF1<0為球缺的高.2022北京冬奧會(huì)的吉祥物“冰墩墩”(如圖1)深受廣大市民的喜愛(ài),它寓意著創(chuàng)造非凡、探索未來(lái),體現(xiàn)了追求卓越、引領(lǐng)時(shí)代,以及面向未來(lái)的無(wú)限可能SKIPIF1<0它的外形可近似抽象成一個(gè)球缺與一個(gè)圓臺(tái)構(gòu)成的組合體(如圖2),已知該圓臺(tái)的底面半徑分別SKIPIF1<0和SKIPIF1<0,高為SKIPIF1<0,球缺所在球的半徑為SKIPIF1<0,則該組合體的體積為.
【答案】SKIPIF1<0/SKIPIF1<0【解析】由題意知圓臺(tái)的體積為SKIPIF1<0,如圖可知SKIPIF1<0,則球心到圓臺(tái)上底面的距離為SKIPIF1<0,故球缺的高為SKIPIF1<0,故球缺的體積為SKIPIF1<0,所以組合體的體積為SKIPIF1<0,故答案為:SKIPIF1<0.14.(2023·湖北武漢·統(tǒng)考模擬預(yù)測(cè))已知四棱錐SKIPIF1<0的底面為平行四邊形,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點(diǎn),過(guò)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)的平面與棱SKIPIF1<0的交點(diǎn)為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.【答案】2【解析】如圖所示,延長(zhǎng)SKIPIF1<0和SKIPIF1<0交于點(diǎn)SKIPIF1<0,由SKIPIF1<0,且SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則過(guò)點(diǎn)SKIPIF1<0的截面即為截面SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.15.(2023·全國(guó)·高三專題練習(xí))毛澤東在《七律二首?送瘟神》中有句詩(shī)為“坐地日行八萬(wàn)里,巡天遙看一千河.”前半句的意思是:人坐在地面上不動(dòng),由于地球的自轉(zhuǎn),每晝夜會(huì)隨著地面經(jīng)過(guò)八萬(wàn)里路程.詩(shī)中所提到的八萬(wàn)里,指的是人坐在赤道附近所得到的數(shù)據(jù).設(shè)某地所在緯度為北緯SKIPIF1<0(即地球球心SKIPIF1<0和該地的連線與赤道平面所成的角為SKIPIF1<0),且SKIPIF1<0.若將地球近似看作球體,則某人在該地每晝夜隨著地球自轉(zhuǎn)而經(jīng)過(guò)的路程約為萬(wàn)里.【答案】6【解析】由題意可知,赤道周長(zhǎng)為SKIPIF1<0萬(wàn)里,則地球半徑SKIPIF1<0萬(wàn)里.設(shè)某地隨著地球自轉(zhuǎn),所形成圓的半徑為SKIPIF1<0,則SKIPIF1<0萬(wàn)里,則該圓的周長(zhǎng)SKIPIF1<0萬(wàn)里.故答案為:6.16.(2023·廣東河源·高三校聯(lián)考開(kāi)學(xué)考試)在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0.過(guò)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)的平面與長(zhǎng)方體的六個(gè)面相交得到六邊形SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為.【答案】SKIPIF1<0【解析】如圖所示,在長(zhǎng)方體SKIPIF1<0中,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的中點(diǎn),截面與平面SKIPIF1<0,平面SKIPIF1<0分別相交于直線SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,延長(zhǎng)SKIPIF1<0與SKIPIF1<0的延長(zhǎng)線交于SKIPIF1<0,延長(zhǎng)SKIPIF1<0與SKIPIF1<0相交于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0與SKIPIF1<0垂直,垂足為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題:本題共6小題,共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步棸。17.(10分)(2023·貴州·高三統(tǒng)考開(kāi)學(xué)考試)如圖,直四棱柱SKIPIF1<0的底面SKIPIF1<0為菱形,且SKIPIF1<0,SKIPIF1<0,E,F(xiàn)分別為BC,SKIPIF1<0的中點(diǎn).
(1)證明:平面SKIPIF1<0平面SKIPIF1<0.(2)求平面SKIPIF1<0和平面SKIPIF1<0的夾角的余弦值.【解析】(1)在直四棱柱SKIPIF1<0中,底面SKIPIF1<0為菱形,SKIPIF1<0,連接SKIPIF1<0,如圖,顯然SKIPIF1<0為正三角形,由SKIPIF1<0為SKIPIF1<0的中點(diǎn),得SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)連接SKIPIF1<0,由(1)知SKIPIF1<0是正三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,而SKIPIF1<0,即有SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,于是SKIPIF1<0兩兩垂直,以A為原點(diǎn),分別以SKIPIF1<0所在直線為x,y,z軸建立空間直角坐標(biāo)系,如圖,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0,所以平面SKIPIF1<0和平面SKIPIF1<0的夾角的余弦值為SKIPIF1<0.18.(12分)(2023·四川瀘州·??既#┤鐖D,已知直四棱柱SKIPIF1<0的底面是邊長(zhǎng)為2的正方形,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn).
(1)求證:直線SKIPIF1<0、SKIPIF1<0、SKIPIF1<0交于一點(diǎn);(2)若SKIPIF1<0,求多面體SKIPIF1<0的體積.【解析】(1)連接SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn),所以SKIPIF1<0且SKIPIF1<0.因?yàn)镾KIPIF1<0是直四棱柱,且底面是正方形,所以SKIPIF1<0,且SKIPIF1<0,即四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以四邊形SKIPIF1<0為梯形,所以SKIPIF1<0與SKIPIF1<0交于一點(diǎn),記為SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,則SKIPIF1<0直線SKIPIF1<0,所以直線SKIPIF1<0、SKIPIF1<0、SKIPIF1<0交于一點(diǎn)SKIPIF1<0.(2)連接SKIPIF1<0,由題意可得:SKIPIF1<0.19.(12分)(2023·貴州畢節(jié)·??寄M預(yù)測(cè))在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖1.沿對(duì)角線SKIPIF1<0將SKIPIF1<0折起,使點(diǎn)SKIPIF1<0到達(dá)點(diǎn)SKIPIF1<0的位置,SKIPIF1<0為SKIPIF1<0的中點(diǎn),如圖2.
(1)證明:SKIPIF1<0.(2)若二面角SKIPIF1<0的大小為SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【解析】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為等邊三角形,所以SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0的中點(diǎn),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則折起后SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)由(1)易知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是二面角SKIPIF1<0的平面角,即SKIPIF1<0,所以SKIPIF1<0是等邊三角形,設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,如圖建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.20.(12分)(2023·河北衡水·河北衡水中學(xué)??既#﹫D1是直角梯形SKIPIF1<0,四邊形SKIPIF1<0是邊長(zhǎng)為2的菱形,并且SKIPIF1<0,以SKIPIF1<0為折痕將SKIPIF1<0折起,使點(diǎn)SKIPIF1<0到達(dá)SKIPIF1<0的位置,且SKIPIF1<0,如圖2.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)在棱SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0?若存在,求出直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【解析】(1)(1)證明:如圖所示:在圖1中連接AC,交BE于O,因?yàn)樗倪呅蜸KIPIF1<0是邊長(zhǎng)為2的菱形,并且SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,在圖2中,相交直線SKIPIF1<0均與BE垂直,所以SKIPIF1<0是二面角SKIPIF1<0的平面角,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0;(2)由(1)分別以SKIPIF1<0為x,y,z建立如圖所示空間直角坐標(biāo)系,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,因?yàn)镾KIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,所以直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為:SKIPIF1<0.21.(12分)(2023·西藏日喀則·統(tǒng)考一模)《九章算術(shù)·商功》:“斜解立方,得兩塹堵.斜解塹堵,其一為陽(yáng)馬,一為鱉臑.陽(yáng)馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”劉徽注:“此術(shù)臑者,背節(jié)也,或曰半陽(yáng)馬,其形有似鱉肘,故以名云.中破陽(yáng)馬,得兩鱉臑,鱉臑之起數(shù),數(shù)同而實(shí)據(jù)半,故云六而一即得.”如圖,在鱉臑ABCD中,側(cè)棱AB⊥底面BCD;
(1)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,試求異面直線AC與BD所成角的余弦值.(2)若SKIPIF1<0,SKIPIF1<0,點(diǎn)P在棱AC上運(yùn)動(dòng).試求SKIPIF1<0面積的最小值.【解析】(1)如圖,以SKIPIF1<0為臨邊作平行四邊形SKIPIF1<0,連結(jié)SKIPIF1<0,則異面直線SKIPIF1<0和SKIPIF1<0所成的角為SKIPIF1<0或其補(bǔ)角,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且由(1)可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,所以異面直線SKIPIF1<0和SKIPIF1<0所成的角的余弦值為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,所以異面直線SKIPIF1<0和SKIPIF1<0所成的角的余弦值為SKIPIF1<0;綜上可知,異面直線SKIPIF1<0和SKIPIF1<0所成的角的余弦值為SKIPIF1<0或SKIPIF1<0;(2)如圖,作SKIPIF1<0于點(diǎn)SKIPIF1<0,作SKIPIF1<0于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0都垂直于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,得SKIPIF1<0,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024全新物流信息化項(xiàng)目居間服務(wù)合同下載3篇
- 教育行業(yè)人才流失原因
- 數(shù)據(jù)分析行業(yè)美工工作總結(jié)分享
- 精細(xì)化管理推動(dòng)財(cái)務(wù)效能提升
- 2024年房產(chǎn)證辦理全程委托代理服務(wù)合同3篇
- 數(shù)據(jù)分析應(yīng)用總結(jié)
- 2024年度知識(shí)產(chǎn)權(quán)抵押貸款合同公證及知識(shí)產(chǎn)權(quán)保護(hù)合同3篇
- 婚慶布置設(shè)計(jì)師的主題策劃與舞臺(tái)布置
- 2024年大型宴會(huì)廳慶典活動(dòng)場(chǎng)地租賃合同書(shū)2篇
- 碼頭合作協(xié)議書(shū)
- 部編版五年級(jí)語(yǔ)文上冊(cè)第八單元主題閱讀含答案
- 連鑄工藝講義
- 企業(yè)合并案例分析資料課件
- 臘八國(guó)旗下演講稿2篇
- 大學(xué)語(yǔ)文莊子·秋水(課堂)課件
- 尋覓沉睡的寶船 南海一號(hào) 華光礁一號(hào)
- 中藥材及飲片性狀鑒別1總結(jié)課件
- DB32-T 2948-2016水利工程卷?yè)P(yáng)式啟閉機(jī)檢修技術(shù)規(guī)程-(高清現(xiàn)行)
- 公司EHS(安全、環(huán)保、職業(yè)健康)檢查表
- 《模擬電子技術(shù)基礎(chǔ)》課程設(shè)計(jì)-心電圖儀設(shè)計(jì)與制作
- 公司治理(馬連福 第2版) 課后答案及案例分析 第2章
評(píng)論
0/150
提交評(píng)論