版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
IQVIA
WhitePaper
EnsuringEnterpriseExcellence
ThroughanEvolvedApproachtoDataandAnalytics
TYSONKUEHL,Principal,IQVIAConsulting
VALERIEENG,Assoc.Principal,IQVIAConsultingPATRICKGORMAN,Manager,IQVIAConsulting
Tableofcontents
Introduction1
Improvingtheuseofdataandtoolstodriveimpact1
Understandingyourowndatamaturity3
Whatarethepillarsofanevolveddatastrategy?4
Customer
spotlight8
Closingnote10
HowIQVIAcanhelpyou11
Abouttheauthors12
References14
Introduction
DespitethepromiseofBigDataandAdvancedAnalytics,lifesciences
organizationsfrequentlyremainchallengedbyfundamentalbusinessquestions.Thesechallengesare,inpart,owedtocontinuallyevolvingsocioeconomic,
scientific,andtechnologicalfactors,ormisapplicationofthesenewapproaches.Whilethesearenotnewdevelopments,lifesciencesorganizationsstillstrugglewithtransformingdataintoactionableinsightstoachievecommercialexcellence.Thefrequentreasonforthisisalackofaholisticstrategythatisgrounded
inusecasesthatanorganizationwishestoaddress.Thiswhitepaperoffers
recommendationsfortangibleactionsthatorganizationsshouldprioritizetoturnthisdatastrategyandmanagementchallengeintoadifferentiationopportunity.
Improvingtheuseofdataandtoolstodriveimpact
Healthcaredataisatthecenterofeverylifesciences
organization.Itprovidesinsightsonpatients,providers,andotherstakeholders,whileultimatelydrivingbusinessprioritiesandoperations.Lifesciencesorganizations
devoteteamsandinvestresourcestoprocuring,
managing,andanalyzingdata.Thelifesciencesanalyticsindustrywasestimatedtobe$26.2Bin2023andis
forecasttogrowto$48.4Bby2028,representinga13.5%CAGR.1Furthermore,applicationofnewtechnologies
withinlifesciencesanalyticsisexpectedtogrowatan
evenfasterclipof25.2%CAGR,reaching$8.88Bin2029.2
Whiletheappetiteforinnovativedataapproaches
isthere,Pharmaisstillchallengedwithfeedingthat
appetiteinaneffectiveandefficientmanner.Thus,
theindustryrequiresanevolvedDataandAnalytics
Strategy2.0.Theinflectionpointthattheindustryfacesisashiftfromstandarddataprocurementtoclear
demonstrationofreturnoninvestment(ROI)anddata
valuemaximization.Thisinvolvesthinkingaboutexistingdatathroughnewapproachesandsolutionstomeet
changingbusinesspriorities.
Onepharmaceuticalcompanythathasbeenatthe
forefrontofusingdataasadifferentiatorisNovartis.Sincetakingovertheleadershipreinsin2018,NovartisCEOVasNarasimhanhasmadeafuture-focuseddatastrategyakeypillarofthecorporatestrategy.Thishaspaidoffconsiderablywithmostrecentnetsales+10%andcoreoperatingincome+18%forFY2024.3
|1
“Wehaveonefundamentaladvantageversusourpeers:fiveyearsago,wecreatedan
integrateddatalakewecalleddata42.We’reusingthatdatalaketomoveAIveryquicklyforwardinthecompany...ourdataisorganized,ithasaclearontology,andI’mhopingthatwillleadtomorediscoveriesfasterovertime.”
—VasantNarasimhan,NovartisCEO,speakingwithMSNBC“SquawkontheStreet”July,18,2023.4
Economic,societal,scientific,andregulatorychangeshavecomplicateddataanalysis,butalsoelevatedtheexpectationsfordeepinsight.Thisfurtherhighlightstheneedforanevolveddatastrategy.Asanexample,theIQVIAInstitute’srecentreporton
TrendsinAdult
VaccinationsintheU.S.
revealsthatadults,and
specificallyethnicandracialminoritiesandMedicaidpopulations,continuetohavelowvaccinationsrates.5
Asdiseasesbecomemorecomplexandstakeholders
becomemoredifficulttoreach,thelifesciencesindustrymustcometogethertothinkabout,manage,anduse
datadifferently.
Doingsoentailsnotjustaskingfundamentalquestionsthroughouttheproductlifecycle,butalsoleveragingdataandanalyticsandconnectinginsightsgleaned
throughoutthejourney.
Exhibit1:Pharmafunctionsalongproductjourneyandkeybusinessquestions
Pricingand
reimbursement
PatientIDand
Whatformularytier
prescribing
Patient
Regulatory
amImostlikelytoget
HowdoImaximize
use
Researchand
applications
approvalfor?
launchpotential?
HowdoIensure
innovation
Whatisthemost
DoIhaveanynon-clinical
HowdoImaximize
patientadherence?
Whichofmy
expeditiouspath
trialevidencetosupport
awarenessof,and
Whatnuancesto
pipelineassets
toapproval?
higherreimbursement?
accessto,mytreatment?
patientusageexistina
havethegreatest
Whatgeographies
Whatistheoptimal
Whatismyoptimal
givengeography
chanceofsuccess?
shouldwegotofirst?
rebateprogram?
HCPmessaging?
andwhy?
Clinicaltrials
Howdowedesignthetrialtopositionusfor
thewidestindication,whilealsohavingthebestchanceforsuccess(i.e.,meetingclinicalendpoints)?
Marketingregistration
Whatisthebroadestindicationthat
evidencesupportsformydrug?
Manufactureandsupply
Whatarethebottlenecksinmysupplychain?
Whataremyinventorylevelsanddothey
fluctuateovertime?
WhereshouldIlocatemymanufacturingformaximumefficiency/optimizedproduction?
Distribution/pharmacy
WheredoIhave
bottlenecksinmy
distributionnetworkandwhy?
HowdoIreduce
wastageandaccrualinspecialtypharma?
SafetyandPV
Whatistheadverseevent(AE)trendformydrug?
WhatisthecausalityrelationshipbetweenmydrugandtheAE?
2|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
Understandingyourowndatamaturity
Thesechangesaren’tjustone-size-fits-allupdates.They,infact,firstrequirecompaniestolookinwardtoassesstheirowndatamaturityandhowittiestotheirproductportfolioinsightneeds,corporatestrategy,andabilitytointeractinameaningfulwaywithinternalandexternalstakeholders.Anevolveddatastrategyisrootedin
thedefinitionofthevalueyourorganizationstrives
toderivefromthedata.Basedonthisself-reflection,yourorganizationmustidentifywhereitliesonthe
datamaturitycurveinordertoassesshowtoprogressonwardandupward.
Today,manyofIQVIA’scustomersarestillinstages1-2,withpocketsofstages3-4incertaintherapeuticareasorgeographies.Thisisunderstandableasprogressingalongthedatamaturitycurveisnoeasyfeat—it
takescommitmentatalllevelsofyourorganization;
investmentintime,resources,andmoney;andappetiteforchange.However,ifyourorganizationsuccessfullyprogressesupthedatamaturitycurve,itwillbeableto:
?Maximizethevalueofexistingdataassetswithdeeperandfasterinsights
?Leveragedata,analytics,insights,andcapabilitiesacrossteams
?Lowercostsondataprocurementandinsightsdelivery
Exhibit2:Organizationaldatamaturitycurve
Insight-drivenculture
Scientifichubfordatainsights
Data-drivencapabilities
Governed
self-serviceaccess
Abilitytorapidly
deploy
technology
platforms
designedto
solvespecificbusinessneeds
Thought
leadershipdrivenbywell-governeddataandahighperformingdatascienceteam
Regularadvocacy
fornew
approachesusingdatascienceandmachinelearning
4
Secure,reliabledatarepository
Datawarehouse/lakeandcuratedsystemswith
well-defined
managementandgovernance
Foundationalsystemfor
reportinganddatascience
2
Accesstodatabasedonlevelofexpertise
Reportingteamfocuseson
operational
analyticsandbusinessusers
runqueriesandextractasneeded
3
Businessunits
workwithdatainanuncoordinatedway,withno
shared
definitions/processes
1
Isolateddataprojects
Lackingdataforanalyticsprojects
Keydatasourcesareinfrequentlycollected,withsignificant
manualerrors
0
Data
driven-insightsareingrainedinprocessesand
accessibleacrossthebusinessto
measureresultsanddriveaction
Seamlessly
integratenew
dataanddevelopinsightsintonew
datapolicies
Abilitytorapidlydrivethe
adoptionofnewdigitalanddataapproaches
acrossthe
organization
5
Datamaturity
|3
Whatarethepillarsofanevolveddatastrategy?
Toachievethedegreeofdatamaturityyourorganizationneedstothrive,thereareafewcriticalelementsyou
shouldseek:
1.Business—Directalignmentwithbusiness
objectivesandgoals
?Aligningdatastrategieswithorganizational
objectives:Adatastrategyshouldbeinlinewiththeoverarchingcorporategoalsanddescribehowdatawillhelpachievethosegoals.
?Keyperformanceindicators(KPIs)shouldbe
establishedtoenabletheorganizationtomonitorprogressagainstgoalsinordertomodifystrategyasnecessary.
2.Governance—Definedandyetdynamicdata
governanceanddataarchitecture
?Dataqualityshouldbeestablished,including
qualitycontrols,datacleansingprocedures,andstandardizeddatadefinitions.Doingsohelpstoensuredataaccuracy,reliability,andcompliance.
?Datamanagementsystemsshouldbeableto
combinedatafromvariedsourcesandmakethem
availablethroughouttheorganizationas‘onesourceoftruth’,althoughaccessibilitymaybedeterminedbyroleandneed.
3.Technology—Enablingadvancedanalyticsand
AI/MLcapabilities
?Dataanalyticstoolsandinfrastructureshould
includeresourcessuitedfortheanalysis,as
wellastechnologyplatformsandinfrastructuretoassemble,process,analyze,andvisualize
increasinglylargeamountsofdataefficientlyandeffectivelywithcapacityforscale.
?Datascienceexpertiseshouldbeacquired,
developed,andempowered—thisincludesthe
individualsthatorganizeandcleansedata,aswellasthosethatdeveloptheprogressiveanalytics
modelstouncovernewinsightsandprovidemoreactionablerecommendations(e.g.,AI,ML,GenAI).
4.Security—Compliancewithglobal/regionaldata
privacyandsecurityrequirements
?Datasecurityisofpreeminentimportancegiventhesensitivenatureoftheinformationbeinganalyzed,andreputational,aswellasfinancial,risktothe
organizationshouldsecuritybecompromised.The
datainfrastructureand/orprocessesshouldincluderobustsecuritymeasuressuchasencryption,accesscontrols,andmonitoringsystems.
?Privacyandconsent,particularlywhenusingpatientdata,isafundamentalrequirementandmustbe
addressed.Thisincludesestablishingprotocolstoensurecompliancewiththemarket’sdataprivacyregulations(e.g.,HIPAA,GDPR,LGPD).Additionally,havingtheabilitytoobtainandmanageappropriateconsentfordatausage.
4|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
5.Integration—Innovativedatauseandintegration
acrossdatasets
?Tosucceed,companiesmustalwaysbehungryto
innovate.Thisappliestocorporatedatauseaswell.Onecommonapproach,usedbycompaniessuch
asGoogle,isthe70:20:10approachtoinnovation
andtime.Thisinvolvesidentifyingandcategorizingyourprojectsintocoregroups:70%(i.e.,product
launchorlifecyclemanagement),adjacent20%(newapproachesforexistingprocesses,likeML/NLP
application),andtransformative10%(commonlymoreblueskyfordeploymentin2+years).
?Lifesciencescompaniesarestartingtorecognize
theimportanceofnon-traditionaldatause(like
consumerdata),aswellaslearningtoleveragenovelintegrationsacrossdatasetstogleannewinsightsintotheirbusiness.
6.Culture—Acompanymindsetof
continuousimprovement
?Embeddingthedataculturerequiresgenuineculturechangeanddevelopment.Thisincludesleadershipadvocatingforamindsetthatvaluesdata-driven
decisionmaking.Additionalstepsincludepromotingdataliteracyandfluencyacrosstheorganization,
andencouragingexperimentationandinnovationwithdata(whilemaintainingcompliance).
?Beyondthis,organizationsshouldregularlymonitorprocessestocelebrate‘wins’,buildmomentum,
demonstrateprogress,andidentifyfuture
opportunitiestooptimize.Doingsoallowsthe
processestoberefinedasneededinordertoadapttochangingbusinessneedsandnewtechnologies.
Exhibit3:Dataandanalyticsorganizationeffort
10%
20%
70%
TRANSFORMATIONAL
Completelynewdataand
analyticsfornewmarketsandcustomerinsightneeds
ADJACENT
ExpandingfromcoreD&Alaunchneeds:taking
existingdataoranalysis
andgoingtoadeeperlevel(i.e.,individual)
CORE
Incrementalimprovementstoyourcurrentdata
collection,utilization,andanalyticsenvironment
|5
Lookout!It’snothardtogetstuck—
companiesoftenfindthemselvestrappedevenwhentryingtogetitright
Whilethegoalisclear,lifesciencesorganizationsstillstrugglewithdevelopingandimplementingafuture-proofeddatastrategy.
?Inertia:Often,itstartswithorganizations
de-prioritizingdatastrategy.Thefocusremains
onlaunchingproductsandrunningthebusiness.
Near-termgoalsoverridelonger-termgoals.While
uncomfortable,organizationsmustchallenge
themselvestothinkabouthowdatastrategycanhelpthemmeetbusinessobjectivesinthenear-term
(<6months),mid-term(6-18months),andlong-term(18months+).
?Complacency:Othertimes,organizationsstrugglewithalackofcommitmentandresourcing.An
evolveddatastrategyrequiresalignmentbehindandcommitmenttosharedgoals—acrossteamsand
acrosslevels.Thisenablestoolstobedevelopedandimplemented,aswellasashiftincultureandmindsettoleveragedatatogether.
?Lookingonlyinwardinsteadofout:Iforganizationsdorecognizetheimportanceofevolvingtheirdata
strategy,theyoftenstrugglewithwheretostart.
Organizationsareoftenunwillingtolookoutside
oftheirorganizationsforinnovativesolutionsthat
mayrequireinvestmentandnewwaysofthinking.
Organizationsarealsonotengagingwiththebusinesstofindtherightdatastrategyfitforallteams(i.e.,
usecases).Itiscriticaltogroundstrategyinbusinessobjectives,usecases,andkeybusinessquestions.
Doingsoalignsstakeholdersandsetsthedirectionandscopeforallactivities.
Onceorganizationsunderstandtheimportanceof
evolvingtheirdatastrategytomaximizetheimpactofdata,aswellastheinvestmentrequiredtoachievethis,theycanbegintotakethesetangiblesteps.
1.Connectdatastrategytobusinessobjectives
andgoals
Firstthing’sfirst—inordertogetitright,yourteams
haveto“rowtogether.”Thereisaplethoraofhealthcaredataavailablefororganizationstoleverage,andwithoutastrategyyourinsightswillgetlostintheshuffle.Thekeytoderivingmaximizedvalue—andvaluefitforyourorganization—isensuringyourdatastrategyisalignedtoyourbusinessgoals.Unfocuseddataprocurement
andusagewillultimatelyleadtoredundancies,highercosts,andadditionalfrictionfrommanagingthat
extradata.
Beginbyunderstandingyourorganization’sobjectivesandkeybusinessquestions.Onceidentified,youcan
narrowinonthekindsofdatathatwillhelpyouachievethoseobjectiveswithoutdistraction.Forexample,is
thisararediseaseproductlaunchinanopenmarket,newproductlaunchintoacrowdedmarket,ormatureproductabouttoreachLOE?
Whenexecutedwell,organizationscanleverage
actionableinsightsacrossteams.Notjustthat,but
organizationscanalsolowercostsondataprocurementandinsightsdelivery.
6|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
Exhibit4:IQVIAapproachtodatastrategy
Datastrategyshouldbeginwith,andbedirectlytiedto,organizationalgoalsandkeybusinessquestions
3
What
dataacquisitionandmanagementcapabilitiesarerequired?
1
Whatusecasesdoweneed
tosupport?
Datasource
Datainventory
?Datacatalog
?Dataorganizedbygeography
?Dataorganizedbyfunction
?Dataorganizedbyusecases
?Aggregateddata(Copay,SP,Siteofcare,etc..)
?3rdparty(hospital,claims,labs,demo,EMR)
?Patientsupportprograms
?Registries
?Governmentproviders
?Digitaldevice,digitalcare
?Other(Consumer,etc..)
Existing
businessneeds
Current
Adjacent
Future
Strategic
opportunities
Datagovernance
Datadelivery
?Extractandtransform
?Standardization
?De-identification
?Integration
?Tokenization
?Structured/unstructured
?Storageandexchange
?Privacy
?Access,security
?Compliance
?Quality
?Access
?Stewardshipandpolicies
?Operatingmodel
Long-termgoals
Enablingtechnologies—
APIs,datastreams,cloudconnect
2
Whatanalyticmethodologies
doweutilize?
Data
requirements
Market
requirements
HCP/Patient
requirements
2.Establishgovernanceproceduresandtoolsthat
arefitforpurpose
Anevolveddatastrategymustbebuiltonprocessestogovernpeople,processes,andtechnologies.Thisincludesdefiningrolesandresponsibilities,aswellasdeployingtherighttoolstoequipyourteams.
?Rolesandresponsibilitiesenableteamstosolve
businesschallengeseffectivelyandefficiently.They
definehowteamscanandshouldworktogetherto
findpurposefulsolutionsdesignedtoaddressspecificbusinessquestions.However,toaccomplishthis,rolesandresponsibilitiesmustnotonlybedefined,butalsocodified,disseminated,andenforced.Furthermore,organizationsshouldconsidertheneedforrolesto
evolvetomeetfutureorganizationalneeds.
?Toolsenableteamstocarryouttheirrolesand
responsibilities.Thesetoolsshouldalsoenable
measuresofKPIsandothermetricstogaugesuccessoropportunitiestopivot.Whethertheyaredata
catalogsordashboards,teammustassesswhich
aremostfittomeettheirneeds,whilelookingfor
opportunitiestoleveragethesametoolsacrossteams.
?Processes,whencorrectlyestablished,willhelpyourteamunderstandhowtoaccessthedatatheyneedtoanswertheirquestionsinanefficientmannerontheirown.Establishingthepropertechnologiesenables
yourteam’sabilitytoaccessitsdatainatimelymanner.Establishingtheproperpermissionsandprotocols
ensuresthatonlytherightteamshaveaccessto
relevantdata.
Standardizedandstreamlinedprocesses,roles,
responsibilities,andtoolsestablishthestrongfoundationtoaccelerateinsightsusingthevarietyofdataavailable,fromsyndicated,tocurated,togenerated.
|7
Customerspotlight
Theresultwasaholisticdatacatalogthatenabledteamstounderstandhowdataassetswereused.
Groundingthedatacataloginkeybusiness
questionsenabledidentificationofinsightsthat
couldbeleveragedacrossteamsandofredundantdatasetsbeingprocuredandanalyzedbymultipleteams.Establishinggovernanceofthedatacatalogenabledaccountabilityandcommitmenttonotonlymaintenanceofthetool,butalsotothesharedvalueinthetool.
IQVIArecentlyworkedwithaTop10pharmaceuticalcompanyonits2-3yeardataandanalyticsstrategy.Duringtheinitialassessment,werecognizedtheneedforasingle,business-friendlydatacatalogasastrongfoundationforthemanagementanduseofdata
assetsacrossteamsandbrands.Thecommercialdataandanalyticsteambeganbyassessingkeybusinessprioritiesandcorrespondingbusinessquestions.
Thefindingsweremergedwithaninventoryof
commercialdataassets,includingcharacteristicsandconsiderationsforuseofthedataasset.
3.LeverageadvancedanalyticsandAI/MLandbuild
enablingcapabilities
Lifesciencesorganizationsarefollowingotherindustries
inbuildingadvancedanalyticspractices,including
naturallanguageprocessing(NLP)andartificial
intelligence/machinelearning(AI/ML)solutions..
Ultimately,thesesolutionscanyielddeeperandmorepredictiveinsights.Infact,92%oflifesciencesCIOs
andtechnologyexecutivesbelieveAI/MLwillbethetopgame-changingtechnologyinthenextthreeyears.6
However,itiscriticaltorememberthatadvanced
analyticsandAIaresimplytoolstohelpyouansweryourbusinessquestions—notthesolutionsthemselves.
Althoughwhenleveragedcorrectlyandfitforpurpose,thesetechniquescanyieldinsightsthattraditional
analysescannot.Forexample,AI/MLshoulddrive
NextBestAction
,butshouldnotreplacestrategic
planningorgounchecked.Organizationsmustcarefullyassesstheirbusinesspriorities,correspondingbusinessquestions,andanalyticssolutionsthatarefitforpurpose.
4.Ensurecompliancewithapplicableprivacy
regulations,includingthoseoftheUnitedStates(HIPAA),EuropeanUnion(GDPR),andJapan(APPI)
Perhapsthemostimportantdifferencebetween
healthcareindustrydataandthatofothersisthe
requirementtopreventpatientdatafrombeing
compromised.Morespecifically,HIPAArequiresthat
theconfidentiality,integrity,andavailabilityofpersonalhealthinformation(PHI)beprotected,andsafeguardsbeimplemented.Notably,responsibilityforprotectingPHIcanextendbeyondyourorganizationtoinclude
yourpartnersinthebroaderhealthcareecosystem.
Whichbegsthequestion…Areyourpartnersholding
themselvestothesamestandardsasyourorganization?
TheGDPRisbroaderinthatitdealswithallpersonally
identifiableinformation(PII)acrossindustries,butalsoisfocusedonsafeguardinginformation.
“OurworkwithclientsonAIandMLhasfoundthatlessthan15%oftheeffortisneededto
developanalgorithm,withthevastmajoritybeingonsourcingandpreparingthedata.As
pharmapreparestomaximizegenerativeAI’spotential,theymustevolvetheirgo-forwarddatastrategy.Icallit‘DataStrategy2.0.’Thisincludesbuildingspecificcapabilitiesintotheirdataarchitecture,governance,andprocessingtosupportbroadusecases.”
—TysonKuehl,Principal,IQVIAData&AnalyticsConsulting
8|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
Whiletherearenotabledifferences,inbroadstrokes,theprivacyregulationshaveasimilarframeworkinthattheyrequire:
?Controlledaccesstosensitivedata
?PHIencryptionwhenstoredandwhentransmitted
?Methodsfordetectingbreachesorchangesininformation
5.Embraceinnovativedatasetsandintegrateacross
datasetstouncoverhiddeninsight
Whilelifesciencesorganizationsoftenareawareof
opportunitiestogaingreaterinsightsfromdifferent
datasets,theycontinuetothinktraditionallyabout,andaskthesamequestionswith,existingdatasets.Asthehealthcarelandscapechanges—intermsofpatient
expectations,diseasecomplexity,workforcecapabilities,andmore—organizationsmustchallengethemselvestolooktoinnovativedatasetsandintegrationsthathave
notbeenpreviouslyleveraged.
Asanexample,toppharmaorganizationsareturningtheirattentiontopatientsupportprograms.Whilethereare
avarietyofdatatypesandsourcesthataddresspatient
needs,organizationsmustassesshowtobesttomeettheirpatientneeds.Atauniquepharmalevel,thismeansthat
youshouldconsiderthepatientneedsanddatacollectedforuniquepatientsegment(s).ThiscoulddiffergreatlyifyouareworkinginthehighlyprevalenttherapeuticareaofobesityversusararediseaselikeSickleCellDisease.
Furthermore,lifesciencesorganizationsareincreasinglyinvestinginintegratingdatatogaingreaterinsights
intopatients,providers,andotherstakeholders.ThisincludesintegratingthepurchaseofLRxdatawiththeirin-housepatientsupportprogram(PSP)data.Doing
soenablesaunique,longitudinallookatthepatient
journeytobetterunderstandtheirbackgrounds,
experiences,behaviors,drivers,andmore.However,doingsorequiresadedicationtopatientdataprivacy,whichbecomesmorechallengingasdataiscontinuallyintegrated,requiringgreaterdegreesoftokenization,
anonymization,andmonitoringforriskofre-identification(RRD).
Whileintegrationandinteroperabilitycanleadtogreateranddeeperinsights,theyaremeaninglesswithoutuser-friendlyreportingdashboards.Tobesuccessful,your
organizationandteammusthavetoolstofocusonthemostimpactfulKPIsandbusinessquestionsfocusedon
theirrole.Theymusttakethetimetofullyunderstandthepowerofintegrateddataandshareinsights
acrossteams.
6.Activateteamswithashiftincultureandmindset
Establishingtherightprocessesandtoolswillonlygetyousofar.Itiscriticalthatteamsaresupportedand
empoweredtodriveyourdatastrategy.Thisincludesaculturethatanswersbusinessquestionsanddevelopssolutionsthatdrivetowardsaction.Makesurethat
yourorganizationprioritizes“data-drivenculture”initseverydaylanguageandexpectations.Ensurethatbusinessquestionsandprioritiescanbetestedwithhypothesesandevidence.
Todothis,themessagehastocomefromthetopdown,
aswellasthebottomup.Ensureyourorganization’s
leadershipsubscribestothelevelofdata-drivenrigortheyexpectfromtheircolleagues.Andsupportthosecolleagueswithappropriatetrainingsondataliteracy,whichis
expectedtobecomeamainstreampriorityin2-5years.7
Finally,remember,establishinganenduringcultureisanongoingeffort!
“Perhapsthemostunderappreciatedpart
ofourjourneyhasbeentheimportanceofactivelyengagingourbusinesscolleaguesaspartofthejourney.Nowthattheybetterrecognizewhatwecando,andplantodo,wearebroughtinearlieron,asstrategicpartners.Histo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢節(jié)幼兒師范高等專科學?!稉Q熱器原理與設計》2023-2024學年第一學期期末試卷
- 畢節(jié)醫(yī)學高等??茖W?!墩撐膶懽髋c工程倫理》2023-2024學年第一學期期末試卷
- 備品備件購銷合同
- 2025版農(nóng)業(yè)種子檢驗檢測與認證服務合同3篇
- 分布式光伏運維合同
- 中專計算機畢業(yè)實習報告600字5篇
- 2024至2030年PP注塑箱項目投資價值分析報告
- 二零二五年反擔保合同模板:國際貿(mào)易擔保3篇
- 2025年度安置房項目綠化養(yǎng)護合同
- 北京郵電大學世紀學院《無領導小組討論模擬》2023-2024學年第一學期期末試卷
- DB32-T 4752-2024 一體化污水處理設備通.用技術要求
- 2024年新高考Ⅰ卷作文審題立意及寫作指導+課件
- 2024年山東臨沂市恒源熱力集團限公司高校畢業(yè)生招聘9人重點基礎提升難、易點模擬試題(共500題)附帶答案詳解
- 2024年房屋頂賬協(xié)議模板(二篇)
- 美國史智慧樹知到期末考試答案章節(jié)答案2024年東北師范大學
- 售后服務方案及運維方案
- 機加工工作計劃安排
- 2024年巴西手游市場市場前景及投資研究報告
- 2024年云南昆明市公安局直屬部門缺勤務輔警招聘筆試參考題庫附帶答案詳解
- 碼頭建設報批程序
- 商務數(shù)據(jù)分析智慧樹知到期末考試答案2024年
評論
0/150
提交評論