艾昆緯-通過改進的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第1頁
艾昆緯-通過改進的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第2頁
艾昆緯-通過改進的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第3頁
艾昆緯-通過改進的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第4頁
艾昆緯-通過改進的數(shù)據(jù)和分析方法確保企業(yè)卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

IQVIA

WhitePaper

EnsuringEnterpriseExcellence

ThroughanEvolvedApproachtoDataandAnalytics

TYSONKUEHL,Principal,IQVIAConsulting

VALERIEENG,Assoc.Principal,IQVIAConsultingPATRICKGORMAN,Manager,IQVIAConsulting

Tableofcontents

Introduction1

Improvingtheuseofdataandtoolstodriveimpact1

Understandingyourowndatamaturity3

Whatarethepillarsofanevolveddatastrategy?4

Customer

spotlight8

Closingnote10

HowIQVIAcanhelpyou11

Abouttheauthors12

References14

Introduction

DespitethepromiseofBigDataandAdvancedAnalytics,lifesciences

organizationsfrequentlyremainchallengedbyfundamentalbusinessquestions.Thesechallengesare,inpart,owedtocontinuallyevolvingsocioeconomic,

scientific,andtechnologicalfactors,ormisapplicationofthesenewapproaches.Whilethesearenotnewdevelopments,lifesciencesorganizationsstillstrugglewithtransformingdataintoactionableinsightstoachievecommercialexcellence.Thefrequentreasonforthisisalackofaholisticstrategythatisgrounded

inusecasesthatanorganizationwishestoaddress.Thiswhitepaperoffers

recommendationsfortangibleactionsthatorganizationsshouldprioritizetoturnthisdatastrategyandmanagementchallengeintoadifferentiationopportunity.

Improvingtheuseofdataandtoolstodriveimpact

Healthcaredataisatthecenterofeverylifesciences

organization.Itprovidesinsightsonpatients,providers,andotherstakeholders,whileultimatelydrivingbusinessprioritiesandoperations.Lifesciencesorganizations

devoteteamsandinvestresourcestoprocuring,

managing,andanalyzingdata.Thelifesciencesanalyticsindustrywasestimatedtobe$26.2Bin2023andis

forecasttogrowto$48.4Bby2028,representinga13.5%CAGR.1Furthermore,applicationofnewtechnologies

withinlifesciencesanalyticsisexpectedtogrowatan

evenfasterclipof25.2%CAGR,reaching$8.88Bin2029.2

Whiletheappetiteforinnovativedataapproaches

isthere,Pharmaisstillchallengedwithfeedingthat

appetiteinaneffectiveandefficientmanner.Thus,

theindustryrequiresanevolvedDataandAnalytics

Strategy2.0.Theinflectionpointthattheindustryfacesisashiftfromstandarddataprocurementtoclear

demonstrationofreturnoninvestment(ROI)anddata

valuemaximization.Thisinvolvesthinkingaboutexistingdatathroughnewapproachesandsolutionstomeet

changingbusinesspriorities.

Onepharmaceuticalcompanythathasbeenatthe

forefrontofusingdataasadifferentiatorisNovartis.Sincetakingovertheleadershipreinsin2018,NovartisCEOVasNarasimhanhasmadeafuture-focuseddatastrategyakeypillarofthecorporatestrategy.Thishaspaidoffconsiderablywithmostrecentnetsales+10%andcoreoperatingincome+18%forFY2024.3

|1

“Wehaveonefundamentaladvantageversusourpeers:fiveyearsago,wecreatedan

integrateddatalakewecalleddata42.We’reusingthatdatalaketomoveAIveryquicklyforwardinthecompany...ourdataisorganized,ithasaclearontology,andI’mhopingthatwillleadtomorediscoveriesfasterovertime.”

—VasantNarasimhan,NovartisCEO,speakingwithMSNBC“SquawkontheStreet”July,18,2023.4

Economic,societal,scientific,andregulatorychangeshavecomplicateddataanalysis,butalsoelevatedtheexpectationsfordeepinsight.Thisfurtherhighlightstheneedforanevolveddatastrategy.Asanexample,theIQVIAInstitute’srecentreporton

TrendsinAdult

VaccinationsintheU.S.

revealsthatadults,and

specificallyethnicandracialminoritiesandMedicaidpopulations,continuetohavelowvaccinationsrates.5

Asdiseasesbecomemorecomplexandstakeholders

becomemoredifficulttoreach,thelifesciencesindustrymustcometogethertothinkabout,manage,anduse

datadifferently.

Doingsoentailsnotjustaskingfundamentalquestionsthroughouttheproductlifecycle,butalsoleveragingdataandanalyticsandconnectinginsightsgleaned

throughoutthejourney.

Exhibit1:Pharmafunctionsalongproductjourneyandkeybusinessquestions

Pricingand

reimbursement

PatientIDand

Whatformularytier

prescribing

Patient

Regulatory

amImostlikelytoget

HowdoImaximize

use

Researchand

applications

approvalfor?

launchpotential?

HowdoIensure

innovation

Whatisthemost

DoIhaveanynon-clinical

HowdoImaximize

patientadherence?

Whichofmy

expeditiouspath

trialevidencetosupport

awarenessof,and

Whatnuancesto

pipelineassets

toapproval?

higherreimbursement?

accessto,mytreatment?

patientusageexistina

havethegreatest

Whatgeographies

Whatistheoptimal

Whatismyoptimal

givengeography

chanceofsuccess?

shouldwegotofirst?

rebateprogram?

HCPmessaging?

andwhy?

Clinicaltrials

Howdowedesignthetrialtopositionusfor

thewidestindication,whilealsohavingthebestchanceforsuccess(i.e.,meetingclinicalendpoints)?

Marketingregistration

Whatisthebroadestindicationthat

evidencesupportsformydrug?

Manufactureandsupply

Whatarethebottlenecksinmysupplychain?

Whataremyinventorylevelsanddothey

fluctuateovertime?

WhereshouldIlocatemymanufacturingformaximumefficiency/optimizedproduction?

Distribution/pharmacy

WheredoIhave

bottlenecksinmy

distributionnetworkandwhy?

HowdoIreduce

wastageandaccrualinspecialtypharma?

SafetyandPV

Whatistheadverseevent(AE)trendformydrug?

WhatisthecausalityrelationshipbetweenmydrugandtheAE?

2|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Understandingyourowndatamaturity

Thesechangesaren’tjustone-size-fits-allupdates.They,infact,firstrequirecompaniestolookinwardtoassesstheirowndatamaturityandhowittiestotheirproductportfolioinsightneeds,corporatestrategy,andabilitytointeractinameaningfulwaywithinternalandexternalstakeholders.Anevolveddatastrategyisrootedin

thedefinitionofthevalueyourorganizationstrives

toderivefromthedata.Basedonthisself-reflection,yourorganizationmustidentifywhereitliesonthe

datamaturitycurveinordertoassesshowtoprogressonwardandupward.

Today,manyofIQVIA’scustomersarestillinstages1-2,withpocketsofstages3-4incertaintherapeuticareasorgeographies.Thisisunderstandableasprogressingalongthedatamaturitycurveisnoeasyfeat—it

takescommitmentatalllevelsofyourorganization;

investmentintime,resources,andmoney;andappetiteforchange.However,ifyourorganizationsuccessfullyprogressesupthedatamaturitycurve,itwillbeableto:

?Maximizethevalueofexistingdataassetswithdeeperandfasterinsights

?Leveragedata,analytics,insights,andcapabilitiesacrossteams

?Lowercostsondataprocurementandinsightsdelivery

Exhibit2:Organizationaldatamaturitycurve

Insight-drivenculture

Scientifichubfordatainsights

Data-drivencapabilities

Governed

self-serviceaccess

Abilitytorapidly

deploy

technology

platforms

designedto

solvespecificbusinessneeds

Thought

leadershipdrivenbywell-governeddataandahighperformingdatascienceteam

Regularadvocacy

fornew

approachesusingdatascienceandmachinelearning

4

Secure,reliabledatarepository

Datawarehouse/lakeandcuratedsystemswith

well-defined

managementandgovernance

Foundationalsystemfor

reportinganddatascience

2

Accesstodatabasedonlevelofexpertise

Reportingteamfocuseson

operational

analyticsandbusinessusers

runqueriesandextractasneeded

3

Businessunits

workwithdatainanuncoordinatedway,withno

shared

definitions/processes

1

Isolateddataprojects

Lackingdataforanalyticsprojects

Keydatasourcesareinfrequentlycollected,withsignificant

manualerrors

0

Data

driven-insightsareingrainedinprocessesand

accessibleacrossthebusinessto

measureresultsanddriveaction

Seamlessly

integratenew

dataanddevelopinsightsintonew

datapolicies

Abilitytorapidlydrivethe

adoptionofnewdigitalanddataapproaches

acrossthe

organization

5

Datamaturity

|3

Whatarethepillarsofanevolveddatastrategy?

Toachievethedegreeofdatamaturityyourorganizationneedstothrive,thereareafewcriticalelementsyou

shouldseek:

1.Business—Directalignmentwithbusiness

objectivesandgoals

?Aligningdatastrategieswithorganizational

objectives:Adatastrategyshouldbeinlinewiththeoverarchingcorporategoalsanddescribehowdatawillhelpachievethosegoals.

?Keyperformanceindicators(KPIs)shouldbe

establishedtoenabletheorganizationtomonitorprogressagainstgoalsinordertomodifystrategyasnecessary.

2.Governance—Definedandyetdynamicdata

governanceanddataarchitecture

?Dataqualityshouldbeestablished,including

qualitycontrols,datacleansingprocedures,andstandardizeddatadefinitions.Doingsohelpstoensuredataaccuracy,reliability,andcompliance.

?Datamanagementsystemsshouldbeableto

combinedatafromvariedsourcesandmakethem

availablethroughouttheorganizationas‘onesourceoftruth’,althoughaccessibilitymaybedeterminedbyroleandneed.

3.Technology—Enablingadvancedanalyticsand

AI/MLcapabilities

?Dataanalyticstoolsandinfrastructureshould

includeresourcessuitedfortheanalysis,as

wellastechnologyplatformsandinfrastructuretoassemble,process,analyze,andvisualize

increasinglylargeamountsofdataefficientlyandeffectivelywithcapacityforscale.

?Datascienceexpertiseshouldbeacquired,

developed,andempowered—thisincludesthe

individualsthatorganizeandcleansedata,aswellasthosethatdeveloptheprogressiveanalytics

modelstouncovernewinsightsandprovidemoreactionablerecommendations(e.g.,AI,ML,GenAI).

4.Security—Compliancewithglobal/regionaldata

privacyandsecurityrequirements

?Datasecurityisofpreeminentimportancegiventhesensitivenatureoftheinformationbeinganalyzed,andreputational,aswellasfinancial,risktothe

organizationshouldsecuritybecompromised.The

datainfrastructureand/orprocessesshouldincluderobustsecuritymeasuressuchasencryption,accesscontrols,andmonitoringsystems.

?Privacyandconsent,particularlywhenusingpatientdata,isafundamentalrequirementandmustbe

addressed.Thisincludesestablishingprotocolstoensurecompliancewiththemarket’sdataprivacyregulations(e.g.,HIPAA,GDPR,LGPD).Additionally,havingtheabilitytoobtainandmanageappropriateconsentfordatausage.

4|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

5.Integration—Innovativedatauseandintegration

acrossdatasets

?Tosucceed,companiesmustalwaysbehungryto

innovate.Thisappliestocorporatedatauseaswell.Onecommonapproach,usedbycompaniessuch

asGoogle,isthe70:20:10approachtoinnovation

andtime.Thisinvolvesidentifyingandcategorizingyourprojectsintocoregroups:70%(i.e.,product

launchorlifecyclemanagement),adjacent20%(newapproachesforexistingprocesses,likeML/NLP

application),andtransformative10%(commonlymoreblueskyfordeploymentin2+years).

?Lifesciencescompaniesarestartingtorecognize

theimportanceofnon-traditionaldatause(like

consumerdata),aswellaslearningtoleveragenovelintegrationsacrossdatasetstogleannewinsightsintotheirbusiness.

6.Culture—Acompanymindsetof

continuousimprovement

?Embeddingthedataculturerequiresgenuineculturechangeanddevelopment.Thisincludesleadershipadvocatingforamindsetthatvaluesdata-driven

decisionmaking.Additionalstepsincludepromotingdataliteracyandfluencyacrosstheorganization,

andencouragingexperimentationandinnovationwithdata(whilemaintainingcompliance).

?Beyondthis,organizationsshouldregularlymonitorprocessestocelebrate‘wins’,buildmomentum,

demonstrateprogress,andidentifyfuture

opportunitiestooptimize.Doingsoallowsthe

processestoberefinedasneededinordertoadapttochangingbusinessneedsandnewtechnologies.

Exhibit3:Dataandanalyticsorganizationeffort

10%

20%

70%

TRANSFORMATIONAL

Completelynewdataand

analyticsfornewmarketsandcustomerinsightneeds

ADJACENT

ExpandingfromcoreD&Alaunchneeds:taking

existingdataoranalysis

andgoingtoadeeperlevel(i.e.,individual)

CORE

Incrementalimprovementstoyourcurrentdata

collection,utilization,andanalyticsenvironment

|5

Lookout!It’snothardtogetstuck—

companiesoftenfindthemselvestrappedevenwhentryingtogetitright

Whilethegoalisclear,lifesciencesorganizationsstillstrugglewithdevelopingandimplementingafuture-proofeddatastrategy.

?Inertia:Often,itstartswithorganizations

de-prioritizingdatastrategy.Thefocusremains

onlaunchingproductsandrunningthebusiness.

Near-termgoalsoverridelonger-termgoals.While

uncomfortable,organizationsmustchallenge

themselvestothinkabouthowdatastrategycanhelpthemmeetbusinessobjectivesinthenear-term

(<6months),mid-term(6-18months),andlong-term(18months+).

?Complacency:Othertimes,organizationsstrugglewithalackofcommitmentandresourcing.An

evolveddatastrategyrequiresalignmentbehindandcommitmenttosharedgoals—acrossteamsand

acrosslevels.Thisenablestoolstobedevelopedandimplemented,aswellasashiftincultureandmindsettoleveragedatatogether.

?Lookingonlyinwardinsteadofout:Iforganizationsdorecognizetheimportanceofevolvingtheirdata

strategy,theyoftenstrugglewithwheretostart.

Organizationsareoftenunwillingtolookoutside

oftheirorganizationsforinnovativesolutionsthat

mayrequireinvestmentandnewwaysofthinking.

Organizationsarealsonotengagingwiththebusinesstofindtherightdatastrategyfitforallteams(i.e.,

usecases).Itiscriticaltogroundstrategyinbusinessobjectives,usecases,andkeybusinessquestions.

Doingsoalignsstakeholdersandsetsthedirectionandscopeforallactivities.

Onceorganizationsunderstandtheimportanceof

evolvingtheirdatastrategytomaximizetheimpactofdata,aswellastheinvestmentrequiredtoachievethis,theycanbegintotakethesetangiblesteps.

1.Connectdatastrategytobusinessobjectives

andgoals

Firstthing’sfirst—inordertogetitright,yourteams

haveto“rowtogether.”Thereisaplethoraofhealthcaredataavailablefororganizationstoleverage,andwithoutastrategyyourinsightswillgetlostintheshuffle.Thekeytoderivingmaximizedvalue—andvaluefitforyourorganization—isensuringyourdatastrategyisalignedtoyourbusinessgoals.Unfocuseddataprocurement

andusagewillultimatelyleadtoredundancies,highercosts,andadditionalfrictionfrommanagingthat

extradata.

Beginbyunderstandingyourorganization’sobjectivesandkeybusinessquestions.Onceidentified,youcan

narrowinonthekindsofdatathatwillhelpyouachievethoseobjectiveswithoutdistraction.Forexample,is

thisararediseaseproductlaunchinanopenmarket,newproductlaunchintoacrowdedmarket,ormatureproductabouttoreachLOE?

Whenexecutedwell,organizationscanleverage

actionableinsightsacrossteams.Notjustthat,but

organizationscanalsolowercostsondataprocurementandinsightsdelivery.

6|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Exhibit4:IQVIAapproachtodatastrategy

Datastrategyshouldbeginwith,andbedirectlytiedto,organizationalgoalsandkeybusinessquestions

3

What

dataacquisitionandmanagementcapabilitiesarerequired?

1

Whatusecasesdoweneed

tosupport?

Datasource

Datainventory

?Datacatalog

?Dataorganizedbygeography

?Dataorganizedbyfunction

?Dataorganizedbyusecases

?Aggregateddata(Copay,SP,Siteofcare,etc..)

?3rdparty(hospital,claims,labs,demo,EMR)

?Patientsupportprograms

?Registries

?Governmentproviders

?Digitaldevice,digitalcare

?Other(Consumer,etc..)

Existing

businessneeds

Current

Adjacent

Future

Strategic

opportunities

Datagovernance

Datadelivery

?Extractandtransform

?Standardization

?De-identification

?Integration

?Tokenization

?Structured/unstructured

?Storageandexchange

?Privacy

?Access,security

?Compliance

?Quality

?Access

?Stewardshipandpolicies

?Operatingmodel

Long-termgoals

Enablingtechnologies—

APIs,datastreams,cloudconnect

2

Whatanalyticmethodologies

doweutilize?

Data

requirements

Market

requirements

HCP/Patient

requirements

2.Establishgovernanceproceduresandtoolsthat

arefitforpurpose

Anevolveddatastrategymustbebuiltonprocessestogovernpeople,processes,andtechnologies.Thisincludesdefiningrolesandresponsibilities,aswellasdeployingtherighttoolstoequipyourteams.

?Rolesandresponsibilitiesenableteamstosolve

businesschallengeseffectivelyandefficiently.They

definehowteamscanandshouldworktogetherto

findpurposefulsolutionsdesignedtoaddressspecificbusinessquestions.However,toaccomplishthis,rolesandresponsibilitiesmustnotonlybedefined,butalsocodified,disseminated,andenforced.Furthermore,organizationsshouldconsidertheneedforrolesto

evolvetomeetfutureorganizationalneeds.

?Toolsenableteamstocarryouttheirrolesand

responsibilities.Thesetoolsshouldalsoenable

measuresofKPIsandothermetricstogaugesuccessoropportunitiestopivot.Whethertheyaredata

catalogsordashboards,teammustassesswhich

aremostfittomeettheirneeds,whilelookingfor

opportunitiestoleveragethesametoolsacrossteams.

?Processes,whencorrectlyestablished,willhelpyourteamunderstandhowtoaccessthedatatheyneedtoanswertheirquestionsinanefficientmannerontheirown.Establishingthepropertechnologiesenables

yourteam’sabilitytoaccessitsdatainatimelymanner.Establishingtheproperpermissionsandprotocols

ensuresthatonlytherightteamshaveaccessto

relevantdata.

Standardizedandstreamlinedprocesses,roles,

responsibilities,andtoolsestablishthestrongfoundationtoaccelerateinsightsusingthevarietyofdataavailable,fromsyndicated,tocurated,togenerated.

|7

Customerspotlight

Theresultwasaholisticdatacatalogthatenabledteamstounderstandhowdataassetswereused.

Groundingthedatacataloginkeybusiness

questionsenabledidentificationofinsightsthat

couldbeleveragedacrossteamsandofredundantdatasetsbeingprocuredandanalyzedbymultipleteams.Establishinggovernanceofthedatacatalogenabledaccountabilityandcommitmenttonotonlymaintenanceofthetool,butalsotothesharedvalueinthetool.

IQVIArecentlyworkedwithaTop10pharmaceuticalcompanyonits2-3yeardataandanalyticsstrategy.Duringtheinitialassessment,werecognizedtheneedforasingle,business-friendlydatacatalogasastrongfoundationforthemanagementanduseofdata

assetsacrossteamsandbrands.Thecommercialdataandanalyticsteambeganbyassessingkeybusinessprioritiesandcorrespondingbusinessquestions.

Thefindingsweremergedwithaninventoryof

commercialdataassets,includingcharacteristicsandconsiderationsforuseofthedataasset.

3.LeverageadvancedanalyticsandAI/MLandbuild

enablingcapabilities

Lifesciencesorganizationsarefollowingotherindustries

inbuildingadvancedanalyticspractices,including

naturallanguageprocessing(NLP)andartificial

intelligence/machinelearning(AI/ML)solutions..

Ultimately,thesesolutionscanyielddeeperandmorepredictiveinsights.Infact,92%oflifesciencesCIOs

andtechnologyexecutivesbelieveAI/MLwillbethetopgame-changingtechnologyinthenextthreeyears.6

However,itiscriticaltorememberthatadvanced

analyticsandAIaresimplytoolstohelpyouansweryourbusinessquestions—notthesolutionsthemselves.

Althoughwhenleveragedcorrectlyandfitforpurpose,thesetechniquescanyieldinsightsthattraditional

analysescannot.Forexample,AI/MLshoulddrive

NextBestAction

,butshouldnotreplacestrategic

planningorgounchecked.Organizationsmustcarefullyassesstheirbusinesspriorities,correspondingbusinessquestions,andanalyticssolutionsthatarefitforpurpose.

4.Ensurecompliancewithapplicableprivacy

regulations,includingthoseoftheUnitedStates(HIPAA),EuropeanUnion(GDPR),andJapan(APPI)

Perhapsthemostimportantdifferencebetween

healthcareindustrydataandthatofothersisthe

requirementtopreventpatientdatafrombeing

compromised.Morespecifically,HIPAArequiresthat

theconfidentiality,integrity,andavailabilityofpersonalhealthinformation(PHI)beprotected,andsafeguardsbeimplemented.Notably,responsibilityforprotectingPHIcanextendbeyondyourorganizationtoinclude

yourpartnersinthebroaderhealthcareecosystem.

Whichbegsthequestion…Areyourpartnersholding

themselvestothesamestandardsasyourorganization?

TheGDPRisbroaderinthatitdealswithallpersonally

identifiableinformation(PII)acrossindustries,butalsoisfocusedonsafeguardinginformation.

“OurworkwithclientsonAIandMLhasfoundthatlessthan15%oftheeffortisneededto

developanalgorithm,withthevastmajoritybeingonsourcingandpreparingthedata.As

pharmapreparestomaximizegenerativeAI’spotential,theymustevolvetheirgo-forwarddatastrategy.Icallit‘DataStrategy2.0.’Thisincludesbuildingspecificcapabilitiesintotheirdataarchitecture,governance,andprocessingtosupportbroadusecases.”

—TysonKuehl,Principal,IQVIAData&AnalyticsConsulting

8|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Whiletherearenotabledifferences,inbroadstrokes,theprivacyregulationshaveasimilarframeworkinthattheyrequire:

?Controlledaccesstosensitivedata

?PHIencryptionwhenstoredandwhentransmitted

?Methodsfordetectingbreachesorchangesininformation

5.Embraceinnovativedatasetsandintegrateacross

datasetstouncoverhiddeninsight

Whilelifesciencesorganizationsoftenareawareof

opportunitiestogaingreaterinsightsfromdifferent

datasets,theycontinuetothinktraditionallyabout,andaskthesamequestionswith,existingdatasets.Asthehealthcarelandscapechanges—intermsofpatient

expectations,diseasecomplexity,workforcecapabilities,andmore—organizationsmustchallengethemselvestolooktoinnovativedatasetsandintegrationsthathave

notbeenpreviouslyleveraged.

Asanexample,toppharmaorganizationsareturningtheirattentiontopatientsupportprograms.Whilethereare

avarietyofdatatypesandsourcesthataddresspatient

needs,organizationsmustassesshowtobesttomeettheirpatientneeds.Atauniquepharmalevel,thismeansthat

youshouldconsiderthepatientneedsanddatacollectedforuniquepatientsegment(s).ThiscoulddiffergreatlyifyouareworkinginthehighlyprevalenttherapeuticareaofobesityversusararediseaselikeSickleCellDisease.

Furthermore,lifesciencesorganizationsareincreasinglyinvestinginintegratingdatatogaingreaterinsights

intopatients,providers,andotherstakeholders.ThisincludesintegratingthepurchaseofLRxdatawiththeirin-housepatientsupportprogram(PSP)data.Doing

soenablesaunique,longitudinallookatthepatient

journeytobetterunderstandtheirbackgrounds,

experiences,behaviors,drivers,andmore.However,doingsorequiresadedicationtopatientdataprivacy,whichbecomesmorechallengingasdataiscontinuallyintegrated,requiringgreaterdegreesoftokenization,

anonymization,andmonitoringforriskofre-identification(RRD).

Whileintegrationandinteroperabilitycanleadtogreateranddeeperinsights,theyaremeaninglesswithoutuser-friendlyreportingdashboards.Tobesuccessful,your

organizationandteammusthavetoolstofocusonthemostimpactfulKPIsandbusinessquestionsfocusedon

theirrole.Theymusttakethetimetofullyunderstandthepowerofintegrateddataandshareinsights

acrossteams.

6.Activateteamswithashiftincultureandmindset

Establishingtherightprocessesandtoolswillonlygetyousofar.Itiscriticalthatteamsaresupportedand

empoweredtodriveyourdatastrategy.Thisincludesaculturethatanswersbusinessquestionsanddevelopssolutionsthatdrivetowardsaction.Makesurethat

yourorganizationprioritizes“data-drivenculture”initseverydaylanguageandexpectations.Ensurethatbusinessquestionsandprioritiescanbetestedwithhypothesesandevidence.

Todothis,themessagehastocomefromthetopdown,

aswellasthebottomup.Ensureyourorganization’s

leadershipsubscribestothelevelofdata-drivenrigortheyexpectfromtheircolleagues.Andsupportthosecolleagueswithappropriatetrainingsondataliteracy,whichis

expectedtobecomeamainstreampriorityin2-5years.7

Finally,remember,establishinganenduringcultureisanongoingeffort!

“Perhapsthemostunderappreciatedpart

ofourjourneyhasbeentheimportanceofactivelyengagingourbusinesscolleaguesaspartofthejourney.Nowthattheybetterrecognizewhatwecando,andplantodo,wearebroughtinearlieron,asstrategicpartners.Histo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論