版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Lesson19SmartRooms
(第十九課智能房間)
Vocabulary(詞匯)ImportantSentences(重點句)QuestionsandAnswers(問答)Problems(問題)
Increatingcomputersystemsthatcanidentifypeopleandinterprettheiractions,researchershavecomeonestepclosertobuildinghelpfulhomeandworkenvironments
Imagineahousethatalwaysknowswhereyourkidsareandtellsyouiftheyaregettingintotrouble.Oranofficethatseeswhenyouarehavinganimportantmeetingandshieldsyoufrominterruptions.Oracarthatsenseswhenyouaretiredandwarnsyoutopullover.Scientistshavelongtriedtodesigncomputersystemsthatcouldaccomplishsuchfeats.Despitetheirefforts,modernmachinesarestillnomatchforbaby-sittersorsecretaries.Buttheycouldbe.
Theproblem,inmyopinion,isthatourcurrentcomputersarebothdeafandblind:theyexperiencetheworldonlybywayofakeyboardandamouse.Evenmultimediamachines,thosethathandleaudiovisualsignalsaswellastext,simplytransportstringsofdata.Theydonotunderstandthemeaningbehindthecharacters,soundsandpicturestheyconvey.Ibelievecomputersmustbeabletoseeandhearwhatwedobeforetheycanprovetrulyhelpful.Whatismore,theymustbeabletorecognizewhoweareand,asmuchasanotherpersonorevenadogwould,makesenseofwhatwearethinking.
Tothatend,mygroupattheMediaLaboratoryattheMassachusettsInstituteofTechnologyhasrecentlydevelopedafamilyofcomputersystemsforrecognizingfaces,expressionsandgestures.Thetechnologyhasenabledustobuildenvironmentsthatbehavesomewhatlikethehouse,officeandcardescribedabove.Theseareas,whichwecallsmartrooms,arefurnishedwithcamerasandmicrophonesthatrelaytheirrecordingstoanearbynetworkofcomputers.Thecomputersassesswhatpeopleinthesmartroomaresayinganddoing.Thankstothisconnection,visitorscanusetheiractions,voicesandexpressions-insteadofkeyboards,sensorsorgoggles-tocontrolcomputerprograms,browsemultimediainformationorventureintorealmsofvirtualreality.[1]Thekeyideaisthatbecausethesmartroomknowssomethingaboutthepeopleinit,itcanreactintelligentlytothem.WorkingtogetherwithPattieMaesandme,graduatestudentsTrevorDarrellandBruceM.Blumbergconstructedthefirstsmartroomin1991atM.I.T.Theinitiativequicklygrewintoacollaborativeexperimentandnowinvolvesfivesuchrooms,alllinkedbytelephonelines,aroundtheworld:threeinBoston,oneinJapanandoneintheU.K.(InstallationsarealsoplannedforParis,NewYorkCityandDallas.)
Eachroomcontainsseveralmachines,nonemorepowerfulthanapersonalcomputer.Theseunitstackledifferentproblems.Forinstance,ifasmartroommustanalyzeimages,soundsandgestures,weequipitwiththreecomputers,oneforeachtypeofinterpretation.Ifgreatercapabilitiesareneeded,weaddmoremachines.Althoughthemodulestakeondifferenttasks,theyallrelyonthesamestatisticalmethod,knownasmaximumlikelihoodanalysis:thecomputerscompareincominginformationwithmodelstheyhavestoredinmemory.[2]Theycalculatethechancethateachstoredmodeldescribestheobservedinputandultimatelypicktheclosestmatch.Bymakingsuchcomparisons,oursmart-roommachinescananswerarangeofquestionsabouttheirusers,includingwhotheyareandsometimesevenwhattheywant.1Where?
Beforeasmartroomcanbegintofigureoutwhatpeoplearedoing,itneedstolocatethem.SograduatestudentsChristopherR.Wren,AliAzarbayejaniandDarrellandIdevelopedasystemcalledPersonFinder(Pfinderforshort)thatcantrackonepersonasheorshemovesaroundintheroom.Asdoourothersystems,Pfinderadoptsthemaximumlikelihoodapproach.First,itmodelsthepersonthecamerarecordsasaconnectedsetofblobs-twoforthehands,twoforthefeetandoneeachforthehead,shirtandpants.Itdescribeseachblobintwoways:asadistributionofvaluesfortheblob’scolorandplacement,andasaso-calledsupportmap,essentiallyalistindicatingwhichimagepixelsbelongtotheblob(pixelsare“pictureelements,”similartothedotsthatmakeupatelevisionimage).[3]Next,Pfindercreatestexturedsurfacestomodelthebackgroundscene.Eachpointononeofthesesurfacescorrelatestoanaveragecolorvalueandadistributionaroundthatmean.Wheneverthecamerainthesmartroompicksupanewpictureinthevideostream,Pfindercomparesthatimagewiththemodelsithasmadeandwithotherreferencesaswell.Tostart,thesystemguesseswhattheblobmodelshouldlooklikeinthenewimage.If,forexample,aperson’supperbodywasmovingtotherightatonemeterpersecondatenthofasecondago,thenPfinderwillassumethatthecenteroftheupperbodyblobhasmovedatenthofametertotheright.Suchestimatesarealsocheckedagainsttypicalpatternsofmovementthatwehavederivedfromtestingthesystemonthousandsofpeople.Forinstance,weknowthatblobscorrespondingtothetorsomustmoveslowly,whereasthoserelatingtohandsandfeetgenerallymovemuchfaster.
Predictionsfinished,Pfinderthenmeasuresthechancethateachpixelinthenewimagebelongstoeachblob.Itdoessobysubtractingthepixel’scolorandbrightnessvaluesfromeachblob’smeancolorandbrightnessvalues.Itcomparestheresultwitheachblob’sdistributiontodeterminehowlikelyitisthatthedifferencehappenedbychance.If,forexample,thebrightnessdifferencebetweenapixelandablobwere10percent,andtheblob’sstatisticssaidthatsuchadifferencehappenedonly1percentofthetime,thechancethatthepixelbelongedtotheblobwouldbeamereonein100.[4]Shadowspresentaminorprobleminthattheycausebrightnessdifferencesthathavenothingtodowiththeprobabilitythatsomepixelbelongstosomeblob.SoPfindersearchesoutshadows,areasthataredarkerthanexpected,andevensouttheircolorhueandsaturationusingthearea’soverallbrightness.
Pfindermustalsoovercomeslightchangesinthelightingorarrangementofobjectsintheroom,eitherofwhichmightmakeitplacecertainpixelsinthewrongmodels.Toavoidthisdifficulty,thesystemcontinuouslyupdatesthepixelsthatarevisiblebehindtheuser,averagingtheoldcolorinformationwiththenew.Inthisway,itkeepstrackofchangesthatoccur,forinstance,whentheusermovesabookandthusaltersthesceneintwoplaces:wherethebookwasandwhereitnowis.Aftercompletingthesevariouscalculationsandcompensations,Pfinderatlastassignseachpixelinthenewimagetothemodelthatmostlikelycontainsit.Finally,itupdatesthestatisticsdescribingtheblobmodelandthebackgroundscene,aswellasthoseanticipatingwhichwaytheblobswillmove.2WhoandHow?
Asidefromknowingwherepeopleare,asmartroommustalsoknowwhotheyareandwhattheyaresaying.Manyworkershaveinventedalgorithmsthatallowcomputerstounderstandspeech.Virtuallyallthosesystemsworkwellonlywhentheuserwearsamicrophoneorsitsnearone.Aroomthatinterpretedyouractionsonlywhenyoustoodinaparticularspotwouldnotseemsosmart.SograduatestudentsSumitBasuandMichaelCaseyandIlookedforanothersolution—onethatwouldletacomputerdecodeauser’sspeechasheorshemovedfreelyaboutsomeroom,eveniftheroomwerequitenoisy.OurendproducttakesadvantageofthefactthatPfinderfollowstheuser’spositionatalltimes.Borrowingthisinformation,thespeech-recognitionsystemelectronically“steers”anarrayoffixedmicrophonessothattheyreinforceonlythosesoundscomingfromthedirectionoftheuser’smouth.[5]Itisaneasyjob.Becausesoundtravelsatafixedspeed,itarrivesatdifferentlocationsatslightlydifferenttimes.Soeachsoundlocationyieldsadifferentpatternoftimedelays.Thus,ifthesystemtakestheoutputsfromafixedarrayofmicrophonesandaddsthemtotimedelaysthatcharacterizeacertainlocation,itcanreinforcethesoundfromthatlocation.Thenitneedonlycomparethesoundwiththoseofknownwordsuntilamatchisfound.
Asmartroommustalsoknowwhoisspeakinginitortoit.Toactwithseemingintelligence,itisabsolutelyvitalthatasystemknowitsusers’identity.Whogivesacommandisoftenasimportantasthecommanditself.Thefastestwaytoidentifysomeonemaywellbetorecognizehisorherface.Sowedevelopedasystemforourroomstodojustthat.Toemploythemaximumlikelihoodapproach,thissystemfirstneededtobuildmodelsofallthefacesit"knew."WorkingwithM.I.T.graduatestudentsMatthewA.TurkandBabackMoghaddam,wefoundthatitwasimportanttofocusonthosefeaturesthatmostefficientlydescribedanentiresetoffaces.Weusedamathematicaltechniquecalledeigenvectoranalysistodescribethosesets,dubbingtheresults“eigenfaces”.Tomodelaface,thesystemdeterminedhowsimilarthatfacewastoeacheigenface.
Thestrategyhasworkedwell.Whenthecameradetectsaperson,theidentifyingsystemextractshisorherface-locatedbyPfinder-fromthesurroundingsceneandnormalizesitscontrast.Thesystemthenmodelsthefaceintermsofwhatsimilaritiesitbearstotheeigenfaces.Next,itcomparesthemodelwiththoseofknownpeople.Ifanyofthesimilarityscoresareclose,thesystemassumesthatithasidentifiedtheuser.Usingthismethod,oursmartroomshaveaccuratelyrecognizedindividualfaces99percentofthetimeamidgroupsofseveralhundred.
Facialexpressionisalmostasimportantasidentity.Ateachingprogram,forexample,shouldknowifitsstudentslookbored.Soonceoursmartroomhasfoundandidentifiedsomeone’sface,itanalyzestheexpression.Yetanothercomputercomparesthefacialmotionthecamerarecordswithmapsdepictingthefacialmotionsinvolvedinmakingvariousexpressions.Eachexpression,infact,involvesauniquecollectionofmusclemovements.Whenyousmile,youcurlthecornersofyourmouthandliftcertainpartsofyourforehead;whenyoufakeasmile,though,youmoveonlyyourmouth.InexperimentsconductedbyscientistIrfanA.Essaandme,oursystemhascorrectlyjudgedexpressions-amongasmallgroupofsubjects-98percentofthetime.3What?
Recognizingaperson’sface,expressionandspeechisjustthefirststep.Forhouses,officesorcarstohelpus,theymustbeabletoputthesebasicperceptionsincontext.Thesamemotions,afterall,canbeinterpretedquitedifferentlydependingonwhatthepersonmakingthemintends.Whenyoudriveacar,forexample,yousometimestakeyourfootfromthegaspedalbecauseyouwanttoslowdown.Butyoudothesamewhenyougetreadytomakeaturn.Thedifferenceisthatinpreparingforaturn,youadjustthesteeringwheelasyoumoveyourfoot.Soacomputersystemwouldneedtoconsiderhowyourmovementshadchangedovertime,incombinationwithothermovements,toknowwhatyouweredoingatanyonemoment.
Indesigningsuchasystem,weborrowedideasfromthescientistsworkingonspeechrecognition.Theymodelindividualwordsassequencesofsounds,or,astheycallthem,internalstates.Eachwordhasacharacteristicdistributionofinternalstates,whicharesometimesphonemes(thesmallestdistinguishableunitsofspeech)andsometimesjustpartsofphonemes.Acomputersystemtriestoidentifywordsbycomparingthesequenceofsoundstheycontainwithwordmodelsandthenselectingthemostlikelymatches.
Wegeneralizedthisapproachinthehopeofdeterminingpeople’sintentionsfromtheirmovements.Wedevisedacomputersystemthatcantell,forexample,whetherapersonwithonearmextendedispointingormerelystretching.Thesystemrecognizestheactioninvolvedinpointingbyreferringtoamodelhavingthreeinternalstates:raisethehand,holditsteadyandreturnitquickly.Thesystemseesstretchingasonecontinuousmovement.Sobyobservingtheseinternalstates-characterizedbytheaccelerationofthehandandthedirectionofitsmovement-oursystemworksoutwhatsomeoneisdoing.
Todate,wehavebuiltseveraldifferentsystemsforinterpretinghumanactionsinthisway.Thesimplestallowpeopletousetheirbodytocontrolvirtualenvironments.OnesuchapplicationistheArtificialLifeInteractiveVideoEnvironment(ALIVE),ajointprojectofMaes’sgroupandmyown.ALIVEutilizesthesmartroom’sdescriptionoftheuser’sshapetoplaceavideomodeloftheuserintoavirtual-realityscene,wherecomputer-generatedlife-formsreside.Thesevirtualcrittersanalyzeinformationaboutauser’sgestures,soundsandpositionstodecidehowtointeractwithhimorher.Silasthevirtualdog,forexample,playsfetch.
Whenasmart-roomusermimicsthemotionsinvolvedinpickingupandthrowingSilas’svirtualball,thedogseesthevideoimageintheALIVEenvironmentdothesameandgetsreadytochaseafteritstoy.Silasalsositsandrollsoveroncommand.Thesmartroom’soutputcanbeputtoworkinanevenmoredirectmanner.Theuser’sbodypositioncanbemappedintoacontrolspaceofsortssothathisorhersoundsandgestureschangetheoperatingmodeofacomputerprogram.Gameplayers,forexample,haveusedthisinterface,insteadofajoystickortrackball,tonavigatethree-dimensionalvirtualenvironments.Ifopponentsappearontheleft,theplayerneedonlyturntothelefttofacethem;tofireaweapon,theplayerneedonlysay,“Bang.”4Why?
Virtual-realitygamesaside,manymorepracticalapplicationsofsmart-roomtechnologyexist.ConsiderAmericanSignLanguage(ASL),asetofsophisticatedhandgesturesusedbydeafandmutepeople.Becausethegesturesarequitecomplex,theyofferagoodtestofourroom’sabilities.Hence,graduatestudentThadStarnerandIsetouttobuildasystemforinterpretingASL.Wefirstbuiltmodelsforeachsign,observingmanyexamplesofthehandmotionsinvolved,asdescribedbyPfinder.WefoundthatifwecomparedthesemodelswithPfinder’smodelsofanactualuserwhileheorshewassigning,wecouldtranslatea40-wordsubsetofASLinrealtimewithanaccuracyrateof99.2percent.Ifwecanincreasethesizeofthevocabularythatoursystemunderstands—anditseemsverylikelythatwewillbeabletodoso—itmaybepossibletocreateinterfacesfordeafpeopleasreliableasthespeech-recognitionsystemsthatarenowbeingintroducedforpeoplewhocanhear.[6]Automobiledrivers,too,standtobenefitfromsmart-roomtechnology.InmanypartsoftheU.S.,theaverageworkerspends10hoursaweekinacar.Morethan40,000motoristsdieintrafficaccidentseachyear,themajorityofwhichcanbeattributedtodrivererror.SotogetherwithAndyLiu,ascientistatNissanCambridgeBasicResearch,wehavebeenbuildingasmart-roomversionofacarinterior.Theultimategoalistodevelopavehiclethatcanmonitorwhatthedriverisdoingandprovideusefulfeedback,suchasroaddirections,operatinginstructionsandeventravelwarnings.Tocompileasetofdrivingmodels—includingwhatactionspeopletookwhentheywerepassing,following,turning,stopping,acceleratingorchanginglanes—weobservedthehandandlegmotionsofmanydriversastheysteeredtheirwaythroughasimulatedcourse.Weusedtheresultingmodelstoclassifyatestdriver’sactionasquicklyaspossible.Surprisingly,thesystemcoulddeterminewhatthedriverwasdoingalmostassoonastheactionhadstarted.Itclassifiedactionswithanaccuracyof86percentwithin0.5secondofthestartofanaction.Giventwoseconds,theaccuracyroseto97percent.
Wehaveshownthat,atleastinsimplesituations,itispossibletotrackpeople’smovements,identifythemandrecognizetheirexpressionsinrealtimeusingonlymodestcomputationalresources.[7]Bycombiningsuchcapabilities,wehavebuiltsmartroomsinwhich,freefromwiresorkeyboards,individualscancontrolcomputerdisplays,playwithvirtualcreaturesandevencommunicatebywayofsignlanguage.Suchperceptualintelligenceisalreadybeginningtospreadtoawidervarietyofsituations.Forinstance,wearenowbuildingprototypesofeyeglassesthatrecognizeyouracquaintancesandwhispertheirnamesinyourear.Wearealsoworkingontelevisionscreensthatknowwhenpeoplearewatchingthem.Andweplantodevelopcreditcardsthatcanrecognizetheirownersandsoknowwhentheyhavebeenstolen.
OtherresearchgroupsattheMediaLabareworkingtograntoursmartroomstheabilitytosenseattentionandemotionandtherebygainadeeperunderstandingofhumanactionsandmotivations.RosalindW.Picardhopestodeviseasystemthatcantellwhendriversorstudentsarenotpayingattention.AaronBobickiswritingsoftwaretointerpretthehumanmotionsusedinsports—imagineatelevisioncamerathatcoulddiscriminatebetweentwofootballplays,say,aquarterbacksneakandanendrun,andfollowtheaction.Assmart-roomtechnologydevelopsevenfurther,computerswillcometoseemmorelikeattentiveassistantsthaninsensibletools.Infact,itisnottoofar—fetchedtoimagineaworldinwhichthedistinctionbetweeninanimateandanimateobjectsactuallybeginstoblur.
1.?kidn.哄騙,取笑,開玩笑,小孩,小山羊v.哄騙,取笑,開玩笑,欺騙。
2.?baby-sittern.代人臨時照看嬰孩者。
3.?audiovisualn.(常用復數)視聽設備,視聽教材adj.視聽的。
4.?gogglen.眼睛睜視,(復數)風鏡,護目鏡adj.睜眼的,瞪眼的;vi.眼珠轉動,瞪眼看vt.使瞪眼。
5.?tacklen.工具,滑車,用具,裝備,扭倒vt.固定,應付(難事等),處理,抓住vi.捉住,扭住。Vocabulary
6.?statisticaladj.統(tǒng)計的,統(tǒng)計學的。
7.?blobn.一滴,水滴,斑點vt.濺污。
8.?texturedadj.織地粗糙的,手摸時有感覺的,有織紋的。
9.?correlatevt.使相互關聯vi.和……相關。
10.?torso未完成的(不完整的)作品,殘缺不全的東西。
11.?huen.色調,樣子,顏色,色彩;叫聲,大聲叫喊,大聲反對。
12.?saturationn.飽和(狀態(tài)),浸潤,浸透,飽和度。
13.?compensationn.補償,賠償。
14.?anticipatevt.預期,期望,過早使用,先人一著,占先v.預訂,預見,可以預料。
15.?pedaln.踏板;?v.踩……的踏板。
16.?phonemen.[語]音位,音素。
17.?dimensionaladj.空間的。
18.?prototypen.原型。
19.?insensibleadj.無知覺的,無同情心的,硬心腸的,麻木不仁的。
20.?blurv.涂污,污損(名譽等),把(界線、視線等)弄得模糊不清,弄污n.污點。
[1]Thecomputersassesswhatpeopleinthesmartroomaresayinganddoing.Thankstothisconnection,visitorscanusetheiractions,voicesandexpressions-insteadofkeyboards,sensorsorgoggles-tocontrolcomputerprograms,browsemultimediainformationorventureintorealmsofvirtualreality.
計算機來判斷智能房間中的人在說什么,做什么。由于有了這個媒介,來訪者可以使用動作、聲音和表情,而不是鍵盤、傳感器或視鏡,來控制計算機程序、瀏覽多媒體信息,或是在虛擬現實世界里探險。注意破折號中間的插入語“insteadofkeyboards,sensorsorgoggles”,第二句句子框架為:VisitorscanuseAtodosomething。ImportantSentences
[2]Althoughthemodulestakeondifferenttasks,theyallrelyonthesamestatisticalmethod,knownasmaximumlikelihoodanalysis:thecomputerscompareincominginformationwithmodelstheyhavestoredinmemory.
盡管這些模塊有不同的任務,但它們都依賴同樣的統(tǒng)計學方法——極大似然法,計算機把輸入的信息和存儲器中已有的模型進行匹配?!癿aximumlikelihoodanalysis”可譯為“最大似然法”。
[3]Itdescribeseachblobintwoways:asadistributionofvaluesfortheblob’scolorandplacement,andasaso-calledsupportmap,essentiallyalistindicatingwhichimagepixelsbelongtotheblob(pixelsare“pictureelements”,similartothedotsthatmakeupatelevisionimage).
它用兩種方法描述每一個塊的屬性:一種方法是描述這個塊的顏色和位置的值的分布,另一種方法是所謂的支持圖,本質上是一張表,它描述哪一個圖像像素屬于這個塊(像素是“圖像元素”,這同組成電視圖像中的點相似)?!癳ssentiallyalistindicatingwhichimagepixelsbelongtotheblob”為“supportmap”的同位語。
[4]If,forexample,thebrightnessdifferencebetweenapixelandablobwere10percent,andtheblob’sstatisticssaidthatsuchadifferencehappenedonly1percentofthetime,thechancethatthepixelbelongedtotheblobwouldbeamereonein100.
舉例來說,如果一個像素和一個塊之間的亮度差為10%,而且塊的統(tǒng)計數值說明了當時這個差的發(fā)生率僅為1%,則這個像素屬于這個塊的機會只有1%。注意“If,forexample,the…”句子結構的使用。
[5]Borrowingthisinformation,thespeech-recognitionsystemelectronically“steers”anarrayoffixedmicrophonessothattheyreinforceonlythosesoundscomingfromthedirectionoftheuser’smouth.
借助于這種信息,語音識別系統(tǒng)電子化的“控制”由固定麥克風組成的矩陣,加強從用戶嘴巴方向傳來的聲音。注意理解帶引號的謂語動詞“steer”的含義,該詞的字面含義為“引導,駕駛”。
[6]Ifwecanincreasethesizeofthevocabularythatoursystemunderstands—anditseemsverylikelythatwewillbeabletodoso—itmaybepossibletocreateinterfacesfordeafpeopleasreliableasthespeech-recognitionsystemsthatarenowbeingintroducedforpeoplewhocanhear.
如果我們能往系統(tǒng)里加入系統(tǒng)可識別的詞匯——很有可能我們會這樣做——我們就有可能開發(fā)出與目前為正常人開發(fā)的接口一樣可靠的聾啞人語音識別系統(tǒng)。注意破折號中間的成分為“插入語”,在分析句子結構時可忽略其存在。
[7]Wehaveshownthat,atleastinsimplesituations,itispossibletotrackpeople’smovements,identifythemandrecognizetheirexpressionsinrealtime
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度環(huán)保建筑材料供貨合同3篇
- 農村土地租賃與鄉(xiāng)村旅游融合發(fā)展合同2篇
- 公益性崗位勞動合同協議書(2025年度)-特殊教育支持服務3篇
- 農村土地抵押借款合同范文(2025年)修訂版
- 二零二五年度養(yǎng)殖場土地租賃與農產品品牌合作合同3篇
- 二零二五年度農村房屋買賣合同協議書(含農村產權交易監(jiān)管)
- 2025年度水電預埋及安裝服務合同范本(公共設施)3篇
- 2025年度養(yǎng)殖土地租賃及農業(yè)物聯網應用協議3篇
- 2024年中國滌絲繡花線市場調查研究報告
- 2024年中國楓木多層膠合板市場調查研究報告
- 道路運輸企業(yè)安全生產管理人員安全考核試題題庫與答案
- 年終抖音運營述職報告
- 車間修繕合同模板
- 腦梗死患者的護理常規(guī)
- 2024年7月國家開放大學法律事務專科《法律咨詢與調解》期末紙質考試試題及答案
- 護士條例解讀
- 醫(yī)務人員崗前培訓課件
- SQE年終總結報告
- 檢修工(題庫)附答案
- 2025屆高考語文一輪復習:小說情節(jié)結構之伏筆 練習題(含答案)
- 兒童文學解讀導論智慧樹知到期末考試答案章節(jié)答案2024年嘉興大學
評論
0/150
提交評論