




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Lesson21IntroductiontoArtificialIntelligence
(第二十一課現(xiàn)代人工智能簡介)
Vocabulary(詞匯)ImportantSentences(重點句)Multiple-choiceQuestions(多選題)Problems(問題)
HumankindhasgivenitselfthescientificnameHomosapiens—manthewise—becauseourmentalcapacitiesaresoimportanttooureverydaylivesandoursenseofself.Thefieldofartificialintelligence,orAI,attemptstounderstandintelligententities.Thus,onereasontostudyitistolearnmoreaboutourselves.Butunlikephilosophyandpsychology,whicharealsoconcernedwithintelligence,AIstrivestobuildintelligententitiesaswellasunderstandthem.AnotherreasontostudyAIisthattheseconstructedintelligententitiesareinterestingandusefulintheirownright.AIhasproducedmanysignificantandimpressiveproductsevenatthisearlystageinitsdevelopment.Althoughnoonecanpredictthefutureindetail,itisclearthatcomputerswithhuman-levelintelligence(orbetter)wouldhaveahugeimpactonoureverydaylivesandonthefuturecourseofcivilization.[1]
AIaddressesoneoftheultimatepuzzles.Howisitpossibleforaslow,tinybrain,whetherbiologicalorelectronic,toperceive,understand,predict,andmanipulateaworldfarlargerandmorecomplicatedthanitself?Howdowegoaboutmakingsomethingwiththoseproperties?Thesearehardquestions,butunlikethesearchforfaster-than-lighttraveloranantigravitydevice,theresearcherinAIhassolidevidencethatthequestispossible.Alltheresearcherhastodoislookinthemirrortoseeanexampleofanintelligentsystem.
AIisoneofthenewestdisciplines.Itwasformallyinitiatedin1956,whenthenamewascoined,althoughatthatpointworkhadbeenunderwayforaboutfiveyears.Alongwithmoderngenetics,itisregularlycitedasthe“fieldIwouldmostliketobein”byscientistsinotherdisciplines.AstudentinphysicsmightreasonablyfeelthatallthegoodideashavealreadybeentakenbyGalileo,Newton,Einstein,andtherest,andthatittakesmanyyearsofstudybeforeonecancontributenewideas.AI,ontheotherhand,stillhasopeningsforafull-timeEinstein.
AIcurrentlyencompassesahugevarietyofsubfields,fromgeneral-purposeareassuchasperceptionandlogicalreasoning,tospecifictaskssuchasplayingchess,provingmathematicaltheorems,writingpoetry,anddiagnosingdiseases.Often,scientistsinotherfieldsmovegraduallyintoartificialintelligence,wheretheyfindthetoolsandvocabularytosystematizeandautomatetheintellectualtasksonwhichtheyhavebeenworkingalltheirlives.[2]Similarly,workersinAIcanchoosetoapplytheirmethodstoanyareaofhumanintellectualendeavor.Inthissense,itistrulyauniversalfield.1WhatisAI?
WehavenowexplainedwhyAIisexciting,butwehavenotsaidwhatitis.Definitionsofartificialintelligenceaccordingtoeightrecenttextbooksareshowninthetablebelow.Thesedefinitionsvaryalongtwomaindimensions.Theonesontopareconcernedwiththoughtprocessesandreasoning,whereastheonesonthebottomaddressbehavior.Also,thedefinitionsontheleftmeasuresuccessintermsofhumanperformance,whereastheonesontherightmeasureagainstanidealconceptofintelligence,whichwewillcallrationality.Asystemisrationalifitdoestherightthing.Table.1AIDefinitionVaryalongtwomaindimensions
Thisgivesusfourpossiblegoalstopursueinartificialintelligence:
Historically,allfourapproacheshavebeenfollowed.Asonemightexpect,atensionexistsbetweenapproachescenteredaroundhumansandapproachescenteredaroundrationality.Ahuman-centeredapproachmustbeanempiricalscience,involvinghypothesisandexperimentalconfirmation.Arationalistapproachinvolvesacombinationofmathematicsandengineering.Peopleineachgroupsometimescastaspersionsonworkdoneintheothergroups,butthetruthisthateachdirectionhasyieldedvaluableinsights.Letuslookateachinmoredetail.2ActingHumanly:theTuringTestApproach
TheTuringTest,proposedbyAlanTuring(Turing,1950),wasdesignedtoprovideasatisfactoryoperationaldefinitionofintelligence.Turingdefinedintelligentbehaviorastheabilitytoachievehuman-levelperformanceinallcognitivetasks,sufficienttofoolaninterrogator.Roughlyspeaking,thetestheproposedisthatthecomputershouldbeinterrogatedbyahumanviaateletype,andpassesthetestiftheinterrogatorcannottellifthereisacomputerorahumanattheotherend.Programmingacomputertopassthetestprovidesplentytoworkon.Thecomputerwouldneedtopossessthefollowingcapabilities:
naturallanguageprocessingtoenableittocommunicatesuccessfullyinEnglish(orsomeotherhumanlanguage);
knowledgerepresentationtostoreinformationprovidedbeforeorduringtheinterrogation;
automatedreasoningtousethestoredinformationtoanswerquestionsandtodrawnewconclusions;
machinelearningtoadapttonewcircumstancesandtodetectandextrapolatepatterns.
Turing’stestdeliberatelyavoideddirectphysicalinteractionbetweentheinterrogatorandthecomputer,becausephysicalsimulationofapersonisunnecessaryforintelligence.[3]However,theso-calledtotalTuringTestincludesavideosignalsothattheinterrogatorcantestthesubject’sperceptualabilities,aswellastheopportunityfortheinterrogatortopassphysicalobjects“throughthehatch.”TopassthetotalTuringTest,thecomputerwillneed
computervisiontoperceiveobjects,and
roboticstomovethemabout.
WithinAI,therehasnotbeenabigefforttotrytopasstheTuringtest.TheissueofactinglikeahumancomesupprimarilywhenAIprogramshavetointeractwithpeople,aswhenanexpertsystemexplainshowitcametoitsdiagnosis,oranaturallanguageprocessingsystemhasadialoguewithauser.Theseprogramsmustbehaveaccordingtocertainnormalconventionsofhumaninteractioninordertomakethemselvesunderstood.Theunderlyingrepresentationandreasoninginsuchasystemmayormaynotbebasedonahumanmodel.3ThinkingHumanly:theCognitiveModellingApproach
Ifwearegoingtosaythatagivenprogramthinkslikeahuman,wemusthavesomewayofdetermininghowhumansthink.Weneedtogetinsidetheactualworkingsofhumanminds.Therearetwowaystodothis:throughintrospection—tryingtocatchourownthoughtsastheygoby—orthroughpsychologicalexperiments.Oncewehaveasufficientlyprecisetheoryofthemind,itbecomespossibletoexpressthetheoryasacomputerprogram.Iftheprogram’sinput/outputandtimingbehaviormatcheshumanbehavior,thatisevidencethatsomeoftheprogram’smechanismsmayalsobeoperatinginhumans.Forexample,NewellandSimon,whodevelopedGPS,the“GeneralProblemSolver”(NewellandSimon,1961),werenotcontenttohavetheirprogramcorrectlysolveproblems.Theyweremoreconcernedwithcomparingthetraceofitsreasoningstepstotracesofhumansubjectssolvingthesameproblems.Thisisincontrasttootherresearchersofthesametime(suchasWang(1960)),whowereconcernedwithgettingtherightanswersregardlessofhowhumansmightdoit.TheinterdisciplinaryfieldofcognitivesciencebringstogethercomputermodelsfromAIandexperimentaltechniquesfrompsychologytotrytoconstructpreciseandtestabletheoriesoftheworkingsofthehumanmind.[4]4Thinkingrationally:Thelawsofthoughtapproach
TheGreekphilosopherAristotlewasoneofthefirsttoattempttocodify“rightthinking,”thatis,irrefutablereasoningprocesses.Hisfamoussyllogismsprovidedpatternsforargumentstructuresthatalwaysgavecorrectconclusionsgivencorrectpremises.Forexample,“Socratesisaman;allmenaremortal;thereforeSocratesismortal.”Theselawsofthoughtweresupposedtogoverntheoperationofthemind,andinitiatedthefieldoflogic.
Thedevelopmentofformallogicinthelatenineteenthandearlytwentiethcenturies,providedaprecisenotationforstatementsaboutallkindsofthingsintheworldandtherelationsbetweenthem.(Contrastthiswithordinaryarithmeticnotation,whichprovidesmainlyforequalityandinequalitystatementsaboutnumbers.)By1965,programsexistedthatcould,givenenoughtimeandmemory,takeadescriptionofaprobleminlogicalnotationandfindthesolutiontotheproblem,ifoneexists.(Ifthereisnosolution,theprogrammightneverstoplookingforit.)Theso-calledlogicisttraditionwithinartificialintelligencehopestobuildonsuchprogramstocreateintelligentsystems.
Therearetwomainobstaclestothisapproach.First,itisnoteasytotakeinformalknowledgeandstateitintheformaltermsrequiredbylogicalnotation,particularlywhentheknowledgeislessthan100%certain.Second,thereisabigdifferencebetweenbeingabletosolveaproblem“inprinciple”anddoingsoinpractice.Evenproblemswithjustafewdozenfactscanexhaustthecomputationalresourcesofanycomputerunlessithassomeguidanceastowhichreasoningstepstotryfirst.[5]Althoughbothoftheseobstaclesapplytoanyattempttobuildcomputationalreasoningsystems,theyappearedfirstinthelogicisttraditionbecausethepoweroftherepresentationandreasoningsystemsarewell-definedandfairlywellunderstood.5ActingRationally:theRationalAgentApproach
Actingrationallymeansactingsoastoachieveone’sgoals,givenone’sbeliefs.Anagentisjustsomethingthatperceivesandacts.(Thismaybeanunusualuseoftheword,butyouwillgetusedtoit.)Inthisapproach,AIisviewedasthestudyandconstructionofrationalagents.
Inthe“l(fā)awsofthought”approachtoAI,thewholeemphasiswasoncorrectinferences.Makingcorrectinferencesissometimespartofbeingarationalagent,becauseonewaytoactrationallyistoreasonlogicallytotheconclusionthatagivenactionwillachieveone’sgoals,andthentoactonthatconclusion.Ontheotherhand,correctinferenceisnotallofrationality,becausethereareoftensituationswherethereisnoprovablycorrectthingtodo,yetsomethingmuststillbedone.Therearealsowaysofactingrationallythatcannotbereasonablysaidtoinvolveinference.Forexample,pullingone’shandoffofahotstoveisareflexactionthatismoresuccessfulthanasloweractiontakenaftercarefuldeliberation.
Allthe“cognitiveskills”neededfortheTuringTestaretheretoallowrationalactions.Thus,weneedtheabilitytorepresentknowledgeandreasonwithitbecausethisenablesustoreachgooddecisionsinawidevarietyofsituations.Weneedtobeabletogeneratecomprehensiblesentencesinnaturallanguagebecausesayingthosesentenceshelpsusgetbyinacomplexsociety.Weneedlearningnotjustforerudition,butbecausehavingabetterideaofhowtheworldworksenablesustogeneratemoreeffectivestrategiesfordealingwithit.Weneedvisualperceptionnotjustbecauseseeingisfun,butinordertogetabetterideaofwhatanactionmightachieve—forexample,beingabletoseeatastymorselhelpsonetomovetowardit.
ThestudyofAIasrationalagentdesignthereforehastwoadvantages.First,itismoregeneralthanthe“l(fā)awsofthought”approach,becausecorrectinferenceisonlyausefulmechanismforachievingrationality,andnotanecessaryone.Second,itismoreamenabletoscientificdevelopmentthanapproachesbasedonhumanbehaviororhumanthought,becausethestandardofrationalityisclearlydefinedandcompletelygeneral.Humanbehavior,ontheotherhand,iswell-adaptedforonespecificenvironmentandistheproduct,inpart,ofacomplicatedandlargelyunknownevolutionaryprocessthatstillmaybefarfromachievingperfection.6TheStateoftheArt
InternationalgrandmasterArnoldDenkerstudiesthepiecesontheboardinfrontofhim.Herealizesthereisnohope;hemustresignthegame.Hisopponent,Hitech,becomesthefirstcomputerprogramtodefeatagrandmasterinagameofchess.
“IwanttogofromBostontoSanFrancisco,”thetravellersaysintothemicrophone.“Whatdatewillyoubetravellingon?”isthereply.ThetravellerexplainsshewantstogoOctober20th,nonstop,onthecheapestavailablefare,returningonSunday.AspeechunderstandingprogramnamedPegasushandlesthewholetransaction,whichresultsinaconfirmedreservationthatsavesthetraveller$894overtheregularcoachfare.Eventhoughthespeechrecognizergetsoneoutoftenwordswrong,itisabletorecoverfromtheseerrorsbecauseofitsunderstandingofhowdialogsareputtogether.
AnanalystintheMissionOperationsroomoftheJetPropulsionLaboratorysuddenlystartspayingattention.Aredmessagehasflashedontothescreenindicatingan“anomaly”withtheVoyagerspacecraft,whichissomewhereinthevicinityofNeptune.Fortunately,theanalystisabletocorrecttheproblemfromtheground.OperationspersonnelbelievetheproblemmighthavebeenoverlookedhaditnotbeenforMarvel,areal-timeexpertsystemthatmonitorsthemassivestreamofdatatransmittedbythespacecraft,handlingroutinetasksandalertingtheanalyststomoreseriousproblems.
CruisingthehighwayoutsideofPittsburghatacomfortable55mph,themaninthedriver’sseatseemsrelaxed.Heshouldbe—forthepast90miles,hehasnothadtotouchthesteeringwheel.Therealdriverisaroboticsystemthatgathersinputfromvideocameras,sonar,andlaserrangefindersattachedtothevan.Itcombinestheseinputswithexperiencelearnedfromtrainingrunsandsuccessfullycomputeshowtosteerthevehicle.
Aleadingexpertonlymph-nodepathologydescribesafiendishlydifficultcasetotheexpertsystem,andexaminesthesystem’sdiagnosis.Hescoffsatthesystem’sresponse.Onlyslightlyworried,thecreatorsofthesystemsuggestheaskthecomputerforanexplanationofthediagnosis.Themachinepointsoutthemajorfactorsinfluencingitsdecision,andexplainsthesubtleinteractionofseveralofthesymptomsinthiscase.Theexpertadmitshiserror,eventually.
Fromacameraperchedonastreetlightabovethecrossroads,thetrafficmonitorwatchesthescene.Ifanyhumanswereawaketoreadthemainscreen,theywouldsee“Citroen2CVturningfromPlacedelaConcordeintoChampsElysees,”“LargetruckofunknownmakestoppedonPlacedelaConcorde,”andsoonintothenight.Andoccasionally,“MajorincidentonPlacedelaConcorde,speedingvancollidedwithmotorcyclist,”andanautomaticcalltotheemergencyservices.
Thesearejustafewexamplesofartificialintelligencesystemsthatexisttoday.Notmagicorsciencefiction—butratherscience,engineering,andmathematics.1.?Homosapiensn.智人(現(xiàn)代人的學名)
2.?antigrarityn.反重力,反引力。
3.?endeavorn.努力,盡力vi.盡力,努力。
4.?dimensionn.尺寸,尺度,維(數(shù)),度(數(shù)),元。
5.?rationalityn.合理性,唯理性。
6.?hypothesisn.假設(shè)。Vocabulary
7.?aspersionn.灑水,誹謗,中傷。
8.?interrogatorn.訊問者,質(zhì)問者。
9.?extrapolatev.推斷,[數(shù)]外推。
10.?cognitiveadj.認知的,認識的,有感知的。
11.?syllogismn.[邏]三段論法,推論法,演繹。
12.?mortaln.凡人,人類adj.必死的,致命的,人類的,臨終的。
13.?agentn.代理。
14.?inferencen.推論。
15.?stateoftheartn.技術(shù)發(fā)展水平。16.?Neptunen.[天]天王星。
17.?lymphn.淋巴腺,淋巴。
18.?pathologyn.病理學。
19.?fiendishlyadv.惡魔似地,極壞地。
20.?eruditionn.博學。
[1]Althoughnoonecanpredictthefutureindetail,itisclearthatcomputerswithhuman-levelintelligence(orbetter)wouldhaveahugeimpactonoureverydaylivesandonthefuturecourseofcivilization.
雖然沒有人可以詳細地預測未來,但是很顯然,具有人類智力水平(或更高水平)的電腦將會對我們的日常生活以及未來的文明進程產(chǎn)生巨大的影響。主句中it為形式主語,真正的主語是that引導的定語從句。ImportantSentences
[2]Often,scientistsinotherfieldsmovegraduallyintoartificialintelligence,wheretheyfindthetoolsandvocabularytosystematizeandautomatetheintellectualtasksonwhichtheyhavebeenworkingalltheirlives.
通常,其他領(lǐng)域的科學家逐步進入到了人工智能領(lǐng)域,他們在那里發(fā)現(xiàn)了能夠?qū)⑺麄円恢彼鶑氖碌墓ぷ飨到y(tǒng)化和自動化的工具和詞匯。where引導定語從句,修飾“artificialintelligence”。
[3]Turing’stestdeliberatelyavoideddirectphysicalinteractionbetweentheinterrogatorandthecomputer,becausephysicalsimulationofapersonisunnecessaryforintelligence.
圖靈測試刻意回避詢問者和計算機之間直接的物理交互,因為人的物理模擬對智能來說是不必要的。
[4]TheinterdisciplinaryfieldofcognitivesciencebringstogethercomputermodelsfromAIandexperimentaltechniquesfrompsychologytotrytoconstructpreciseandtestabletheoriesoftheworkingsofthehumanmind.
認知科學這個跨學科領(lǐng)域匯集了人工智能學的計算機模型以及心理學的實驗技巧,試圖構(gòu)建人類頭腦運轉(zhuǎn)的準確的、可檢驗的理論。本句為一簡單句,結(jié)構(gòu)為Theinterdisciplinaryfield…brings…to….。
[5]Evenproblemswithjustafewdozenfactscanexhaustthecomputationalresourcesofanycomputerunlessithassomeguidanceastowhichreasoningstepstotryfirst.
除非有應該首先執(zhí)行哪個推理步驟的提示,否則即使只有幾十個論據(jù)的問題也能耗盡任何一臺計算機的計算資源。
(1)?OnereasontostudyAIistolearnmoreaboutourselves,itisbecausethat().
A.?AIattemptstounderstandintelligententities
B.?AIattemptstobuildintelligententities
C.?AIisanintelligententities
D.?weareintelligententities
Multiple-choiceQuestions
(2)?Inthethirdparagraph,“AI,ontheotherhand,stillhasopeningsforafull-timeEinstein.”,whatisthemeaning?()
A.?InAI,there’remanynewideasforonetocontributeandmoreeasilytostudy.
B.?AIisnotoneofthenewestdisciplines.
C.?AllthegoodideashavealreadybeentakenbyGalileo,Newton,Einstein,andtherest.
D.?AIwasinitiatedformanyyears.
(3)?WhichistheTuringTest?
A.?Thecomputerandahumanshouldinterrogateeachother,andthec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆師范大學《實驗室安全與法規(guī)》2023-2024學年第二學期期末試卷
- 重慶市主城區(qū)七校聯(lián)考2025年高三教學質(zhì)量檢測試題試卷(二)物理試題含解析
- 公共交通運營服務收費標準制度
- 第18課 清朝的邊疆治理 教案2024-2025學年七年級歷史下冊新課標
- 內(nèi)圓形吊頂施工方案
- 護坡植草施工方案
- 路基修復夜間施工方案
- 工程資料與施工方案
- 汽車隔音施工方案范本
- 2025年搞笑考試面試試題及答案
- 江蘇省藥品上市許可持有人藥品生產(chǎn)質(zhì)量安全主體責任正面清單、負面清單(2023年版)
- 2024年GINA哮喘防治指南修訂解讀課件
- 木地板合同范本
- 2024中交二航局分包合同范本
- 2024年社區(qū)工作者考試必背1000題題庫必背(必刷)
- 教育改革與發(fā)展
- 《形體訓練》課件-勾繃腳訓練
- 醫(yī)療器械(耗材)項目投標服務實施投標方案(技術(shù)方案)
- 監(jiān)控系統(tǒng)維護保養(yǎng)方案
- 2023年國家廣播電視總局無線電臺管理局考試真題及答案
- 房屋修繕工程技術(shù)規(guī)程 DG-TJ08-207-2008
評論
0/150
提交評論