版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省銅仁市偉才學校2025屆高三下學期第五次調研考試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)fx=sinωx+π6+A.16,13 B.12.點在所在的平面內,,,,,且,則()A. B. C. D.3.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.24.如圖,中,點D在BC上,,將沿AD旋轉得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關系是()A. B.C.,兩種情況都存在 D.存在某一位置使得5.把函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.6.復數(shù)的共軛復數(shù)為()A. B. C. D.7.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.8.函數(shù)在上單調遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)9.已知復數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.10.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.11.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.12.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足,則的最大值為______.14.已知,那么______.15.《九章算術》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.16.設等比數(shù)列的前項和為,若,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對數(shù)的底,k為常數(shù))有一個極大值點和一個極小值點.(1)求實數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.18.(12分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù).).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.19.(12分)已知函數(shù)(1)求單調區(qū)間和極值;(2)若存在實數(shù),使得,求證:20.(12分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.21.(12分)已知關于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.22.(10分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關鍵是能夠結合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關于參數(shù)的不等式.2、D【解析】
確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學生的計算能力.3、A【解析】
對函數(shù)求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導數(shù)與極值,考查了學生的運算求解能力,屬于基礎題.4、A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點作交于點,過作的垂線,垂足為,則易得,.設,則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點睛】本題考查空間直線與平面所成的角的大小關系,考查三角函數(shù)的圖象和性質,意在考查學生對這些知識的理解掌握水平.5、D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質.6、D【解析】
直接相乘,得,由共軛復數(shù)的性質即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質.7、A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關于原點對稱);(2)函數(shù)關于點對稱,函數(shù)關于直線對稱,(3)函數(shù)周期為T,則8、B【解析】
根據(jù)題意分析的圖像關于直線對稱,即可得到的單調區(qū)間,利用對稱性以及單調性即可得到的取值范圍?!驹斀狻扛鶕?jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關于直線對稱,若函數(shù)在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質,以及函數(shù)單調性的應用,有一定綜合性,屬于中檔題。9、A【解析】
利用復數(shù)的乘法、除法運算求出,再根據(jù)共軛復數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數(shù)的四則運算、共軛復數(shù)的概念,屬于基礎題.10、C【解析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.11、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.12、B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出不等式組表示的平面區(qū)域,將目標函數(shù)理解為點與構成直線的斜率,數(shù)形結合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因為可以理解為點與構成直線的斜率,數(shù)形結合可知,當且僅當目標函數(shù)過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數(shù)為斜率型的規(guī)劃問題,屬基礎題.14、【解析】
由已知利用誘導公式可求,進而根據(jù)同角三角函數(shù)基本關系即可求解.【詳解】∵,∴,,∴.故答案為:.【點睛】本小題主要考查誘導公式、同角三角函數(shù)的基本關系式,屬于基礎題.15、3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結合方程的思想即可求出結果.16、【解析】
由題意,設等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解.【詳解】由題意,設等比數(shù)列的公比為,因為,即,解得,,所以.【點睛】本題主要考查了等比數(shù)列的通項公式,及前n項和公式的應用,其中解答中根據(jù)等比數(shù)列的通項公式,正確求解首項和公比是解答本題的關鍵,著重考查了推理與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)求出,記,問題轉化為方程有兩個不同解,求導,研究極值即可得結果;(2)由(1)知,在區(qū)間上存在極大值點,且,則可求出極大值,記,求導,求單調性,求出極值即可.【詳解】(1),由,記,,由,且時,,單調遞減,,時,,單調遞增,,由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,記,則,因為,所以,所以時,,單調遞減,時,,單調遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點,且,所以的極大值為,因為,,所以.即函數(shù)的極大值不小于1.【點睛】本題考查導數(shù)研究函數(shù)的單調性,極值,考查學生綜合分析能力與轉化能力,是一道中檔題.18、(1)極坐標方程為,點的極坐標為(2)【解析】
(1)利用極坐標方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點的極坐標,利用計算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標方程為,點的極坐標為.(2)由(1),得點的極坐標為,由直線過原點且傾斜角為,知點的極坐標為,.【點睛】本題考查極坐標方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學生的運算能力,是一道基礎題.19、(1)時,函數(shù)單調遞增,,函數(shù)單調遞減,;(2)見解析【解析】
(1)求出函數(shù)的定義域與導函數(shù),利用導數(shù)求函數(shù)的單調區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構造函數(shù),,利用導數(shù)研究函數(shù)的單調性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調遞增,當時,,即函數(shù)在單調遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調遞增;令,解得,即在上單調遞減;則在取得極小值,也就是最小值,從而結論得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性與極值,利用導數(shù)證明不等式,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.20、(1)見解析(2)1【解析】
(1)選②,③.可得,結合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當時,有最大值1.【點睛】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題.21、(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關于的不等式有解等價于,(?。┊敃r,上述不等式轉化為,解得,(ⅱ)當時,上述不等式轉化為,解得,綜上所述,實數(shù)的取值范圍為,則實數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又∵,,,,,當且僅當時,等號成立,即,∴,所以,.【點睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.22、(1)見解析;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《人心態(tài)輔導》課件
- 代理物業(yè)業(yè)務合同范例
- 商場商鋪租約合同范例
- 水電合同范例復制
- 家電代理合同范例
- 項目app合同范例
- 鞋廠碎料出售合同范例
- 壓鑄開模具合同范例
- 人保貸款合同范例
- 骨科手術機器人
- 2024年01月11185行政領導學期末試題答案
- 績效考核辦法1
- 【MOOC】外科護理學-中山大學 中國大學慕課MOOC答案
- 中建爬架施工方案
- 2024年中國甲烷報警儀市場調查研究報告
- 紀檢委員工作職責
- 2025版國家開放大學法律事務專科《民法學(2)》期末紙質考試總題庫
- 江蘇省南通市多校2024-2025學年二年級上學期期中數(shù)學試卷
- ZHF形勢與政策(2024年秋)-考試題庫
- 企業(yè)地震應急預案管理方案
- 2024中國工商銀行借貸合同范本
評論
0/150
提交評論