2025屆河南省平頂山市高考臨考沖刺數(shù)學試卷含解析_第1頁
2025屆河南省平頂山市高考臨考沖刺數(shù)學試卷含解析_第2頁
2025屆河南省平頂山市高考臨考沖刺數(shù)學試卷含解析_第3頁
2025屆河南省平頂山市高考臨考沖刺數(shù)學試卷含解析_第4頁
2025屆河南省平頂山市高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆河南省平頂山市高考臨考沖刺數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,則A. B.或C. D.2.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.43.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.04.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數(shù)是()A.1 B.2 C.3 D.45.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形6.國務院發(fā)布《關于進一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年7.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.8.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.9.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.810.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.11.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)12.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(為虛數(shù)單位),則復數(shù)________.14.已知點是拋物線上動點,是拋物線的焦點,點的坐標為,則的最小值為______________.15.甲、乙兩人同時參加公務員考試,甲筆試、面試通過的概率分別為和;乙筆試、面試通過的概率分別為和.若筆試面試都通過才被錄取,且甲、乙錄取與否相互獨立,則該次考試只有一人被錄取的概率是__________.16.設,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結(jié)果)18.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.19.(12分)如圖:在中,,,.(1)求角;(2)設為的中點,求中線的長.20.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實數(shù),的值;(2)當時,若有兩個極值點,,且,,若不等式恒成立,試求實數(shù)m的取值范圍.21.(12分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由可得,解得或,所以或,又,所以,故選C.2、C【解析】

將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數(shù)的關系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關系,屬于中檔題.3、C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.4、C【解析】

解:對于(1),當CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關多面體和旋轉(zhuǎn)體對應的特征,以幾何體為載體,考查相關的空間關系,在解題的過程中,需要認真分析,得到結(jié)果,注意對知識點的靈活運用.5、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的應用,是中檔題.6、C【解析】

觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統(tǒng)計圖表,正確認識圖表是解題基礎.7、A【解析】

作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.8、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.9、C【解析】

根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結(jié)果,屬于基礎題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運行結(jié)果,屬于基礎題.10、C【解析】

因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.11、C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.12、C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解:故答案為:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎題.14、【解析】

過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當和拋物線相切時,的值最小.再利用直線的斜率公式、導數(shù)的幾何意義求得切點的坐標,從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點,準線方程為,過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當最小時,的值最小.設切點,由的導數(shù)為,則的斜率為,求得,可得,,,.故答案為:.【點睛】本題考查拋物線的定義,性質(zhì)的簡單應用,直線的斜率公式,導數(shù)的幾何意義,屬于中檔題.15、【解析】

分別求得甲、乙被錄取的概率,根據(jù)獨立事件概率公式可求得結(jié)果.【詳解】甲被錄取的概率;乙被錄取的概率;只有一人被錄取的概率.故答案為:.【點睛】本題考查獨立事件概率的求解問題,屬于基礎題.16、121【解析】

在所給的等式中令,,令,可得2個等式,再根據(jù)所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】

(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;(3)由圖表直接判斷結(jié)果.【詳解】(1)100名學生中共有男生48名,其中共有20人參加公益勞動時間在,設男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,那么;(2)的所有可能取值為0,1,2,3.∴;;;.∴隨機變量的分布列為:(3)由圖表可知,初中生平均參加公益勞動時間較長.【點睛】本小題主要考查古典概型的計算,考查超幾何分布的分布列的計算,屬于基礎題.18、(1)3;(2);(3)見解析.【解析】

(1)依據(jù)下標的關系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列。【點睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應用,意在考查學生的邏輯推理,數(shù)學建模,綜合運用數(shù)列知識的能力。19、(1);(2)【解析】

(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點睛】本題主要考查了正弦定理和余弦定理在解三角形中的應用,考查三角函數(shù)知識的運用,屬于中檔題.20、(1);(2).【解析】

(1)根據(jù)題意,求得的值,根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論