版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
DEMYSTIFYINGARTIFICIALINTELLIGENCEINTRANSPORTATIONCYBERSECURITY
URBANJONSON,SVPITANDCYBERSECURITYSERVICES,SERJON
Copyright?SERJON,LLC2024.Allrightsreserved.
URBANJONSON
ujonson@
Current
SVPInformationTechnologyandCybersecurityServices,SERJON,LLC
USFBIInfraGardTransportationSubjectMatterExpert
FBIAutomotiveSectorSpecificWorkingGroup(SSWG)
BoardofDirectors,CyberTruckChallenge
ProgramCommittee,ESCARUSA
SAEVehicleElectricalSystemSecurityCommitteeMember
Technology&MaintenanceCouncil(TMC)S.5andS.12StudyGroupMember
Experience
Over35yearsofexperienceinITandCybersecurity,includingstrategicplanning,assessments,projectmanagement,andprogrammanagement
Variouspapers,talks,andresearchonhacking,aswellasdefendingtrucksandtransportationingeneral
Abusinganddefendingsystemssincethe1980s
Copyright?SERJON,LLC2024.Allrightsreserved.
AGENDA
?AIOverview
?AITaxonomy
?ChallengeswithAI
?CommonAImistakes
?TransportationApplications
?AttackingAI
?DefendingAI
?Wrap-up
ImagegeneratedbyBingImageCreator
Copyright?SERJON,LLC2024.Allrightsreserved.
AIOVERVIEW
Copyright?SERJON,LLC2024.Allrightsreserved.
HISTORICALOVERVIEW
?1950s–BirthofAI
?AlanTuringandotherslaidthegroundworkformachineintelligence
?1960s–EarlyApplications
?Problem-solvingandsymbolicreasoning,e.g.playingchess
?1980s–ExpertSystems
?Programsdesignedtomimichumanexpertise,e.g.taxsoftware
?1990s–MachineLearningResurgence
?NeuralnetworksandnewalgorithmsrevitalizeinterestinAI
Copyright?SERJON,LLC2024.Allrightsreserved.
HISTORICALOVERVIEW
?2000s–RiseofBigData
?Availabilityoflargedatasetsandimprovedcomputingpower
?2010s–DeepLearningDominance
?Multi-layeredneuralnetworkscapableofimagerecognition,speechrecognition
?2020s–GenerativeAI
?NewLargeLanguageModels(LLM)builtonmassivedatacloudplatformscapableofgeneratingimages,code,andother
content(ChatGPT,BingImageCreator,etc.)basedoninputprompts
Copyright?SERJON,LLC2024.Allrightsreserved.
TECHNICALOVERVIEW
UNDERSTANDABLEVSPREDICTIVEPOWER
Image:NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachinelearning
[.uk/collection/machine-learning]
Copyright?SERJON,LLC2024.Allrightsreserved.
MACHINELEARNINGAPPLICATIONS
Commonmachine
learninganalytic
applications
Image:
/science/article/pii/S0951832021003835
Copyright?SERJON,LLC2024.Allrightsreserved.
ARTIFICIALNEURALNETS
Thecorecomponent
ofneuralnetsisthe
artificialneuron
Conceptuallycanbethoughtofasamini
linearregressionmodel
Image:
/blog/artificial-neural-networks-basics-guide/
Copyright?SERJON,LLC2024.Allrightsreserved.
TRAININGMETHODS
Image:
/science/article/pii/S0951832021003835
Copyright?SERJON,LLC2024.Allrightsreserved.
MODELTRAINING
Simplesupervisedlearning
Imagesareconvertedintonumericaldatausuallybyflatteningintoavector
Image:
/@MITIBMLab/estimating-information-flow-in-deep-neural-networks-b2a77bdda7a7
Copyright?SERJON,LLC2024.Allrightsreserved.
AITAXONOMY
Copyright?SERJON,LLC2024.Allrightsreserved.
OVERVIEW
NISTAIUseTaxonomy*:
?Decomposescomplexhuman-AItasksintoactivitiesthatareindependentoftechnologicaltechniques(e.g.,neural
network,largelanguagemodel,reinforcementlearning)anddomains(e.g.,finance,medicine,law).
?ProvidesaflexiblemeansofclassifyinganAIsystem’scontributiontoaspecifiedhuman-AItask.
?Intendedtobealivingdocumentthatisupdatedperiodicallywithfeedbackfromstakeholders,suchasthoseintheAI
evaluationandhumanfactorscommunities.
*NISTTrustworthyandResponsibleAINISTAI200-1,AIUseTaxonomy:AHuman-CenteredApproach,byTheofanos,Choong,andJenson,March2024,
/10.6028/NIST.AI.200-1
.
Copyright?SERJON,LLC2024.Allrightsreserved.
AITAXONOMY-TRANSPORTATION
?Connectionist–Learningalgorithmsbasedonneuralnetworks
?Bayesians–Probability-basedinferencesystems
?Symbolists–Logic-basedalgorithmssuchasrules-based
programming,decisiontrees,fuzzylogic,andrationalagents
?Analogizers–Similarity-basedclassifiers,suchassupportvectormachines
?Optimizations–Algorithmsperformingiterativeupdatesand
comparisonstodiscoveroptimumsolutions,e.g.GeneticAlgorithm(GA)
JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,JesúsCerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,GeorgeNikolakopoulos,andJoseLuisFlores.
2024.ArtificialIntelligenceforSafety-CriticalSystemsinIndustrialandTransportationDomains:ASurvey.ACMComput.Surv.56,7,Article176(July2024),40pages.
/10.1145/3626314
Copyright?SERJON,LLC2024.Allrightsreserved.
CHALLENGESWITHAI
Copyright?SERJON,LLC2024.Allrightsreserved.
NON-DETERMINISTIC
?Thesameinputswillnotalwaysgeneratethesameoutputs
?Randomdataselectionbasedonprobabilitycurves
?Anytimeyouaddrandomdataselectioninconnectionistmodels,youruntheriskofnon-deterministicoutcomes
?Ifyourmodelcontinuestolearn,forexamplelinearregression,theoutputswillvaryovertimeasmodellearns
?Expertsystemsgenerallydonotsufferfromthisproblem,butanything
thathasaneuralnetworkwillruntherisk
Copyright?SERJON,LLC2024.Allrightsreserved.
INSCRUTABLE
?ThemathandcodeforAIiscompletelyunderstandable…..and“human-ish”readable
?Thedatathatyouusetotrainthemodelis
understandable(hopefully,ifyouhavedoneyourjobright)
?Theproblemiswhenyouusethecodetogenerateamodelbasedonthedata
?Duetohowthemodellearns(developingacomplexwebofprobabilisticweights)andisexpressed,itisnot
possibletolookatthemodelandunderstandhowitworks
Copyright?SERJON,LLC2024.Allrightsreserved.
UNEXPLAINABLE
?Sincethemodelisnon-deterministicandinscrutable,itisnoteasilyunderstood
?Makesexplaining“why”amodelproducedtheexactoutputexceedinglydifficultfor
neuralnetworks
?ExplainableandTrustworthyAIisanareaofintenseresearch
?TrustworthyAIcangenerateatrusted
explanationthathumanscanunderstand
Copyright?SERJON,LLC2024.Allrightsreserved.
WHYTHEPROBLEM?
?Layeredneuralnetworks
?Randomlygeneratedvalues
?Probabilisticevaluations
?Deeplearningisstatisticswithlinearalgebra
Image:
/tutorial/introduction-to-deep-neural-networks
Copyright?SERJON,LLC2024.Allrightsreserved.
DATAPROBLEM
?Ourmodelsareonlyasgoodasourdata
?Transportationdatasetsareintheirinfancy
?Wearestillinthegreat“dataownership”battle
?Ourvehicleplatformslackthesensorstocollectthenecessaryinformation(possible
exception…Tesla)
?Modelsareverylimitedinwhattheycando
Copyright?SERJON,LLC2024.Allrightsreserved.
TRANSPORTATIONDATASAMPLES
?Lackofinstrumentation
?Teslaprobablyhasbestdataset
?VehicleISasensorplatform
?Designedtocollectalldata
?Driversprovidingexperience
?Robottaxifleetdata2ndplace
?Cruise
?Waymo
?ProprietaryDataSources
?OEMdata
?Telematicsdata
?Vehicle/Fleetoperatordata
?OpenData
?PIVOT(
/
)
?EUDataAct
?ColoradoStateUniversity
Copyright?SERJON,LLC2024.Allrightsreserved.
TRAININGDATAPROBLEM
?DeeplearningandLLMsrequiremassivedatasetsforlearningandvalidation
?LLMs,suchasChatGPT,haveusedagreatdealofinternetcontent
?Manyimages,text,books,etc.usedinlearningmodelsarecopyrightedmaterials
?IsgeneratinganAImodelbasedonsomeoneelse’swork
a“fairuse”ofcopyrights?
?WhatiftheresultingAIismonetized?
?Howdoyouremoveonepartorsegmentoftrainingdataonceamodelhasbeencreated?
Copyright?SERJON,LLC2024.Allrightsreserved.
EDGECASES
?Edgecasesarestatisticaloutliereventsthatarenotpartofthetrainingdata
?Thoughtheymayberare,theycan
resultinunexpectedandundesirableoutcomes
?Edgecasesarewheretragedylives
Copyright?SERJON,LLC2024.Allrightsreserved.
Source:Projectguru.in
UBER
?UberAutonomousCrashMarch2018
?Pedestrianwalkingbicycleacrosstheroad
?Vehicleidentifiesandtrackspedestrian
?Vehicledoesnotbreak
?Safetydriverwasdistractedanddidnotact
?Factoryauto-breakingsystemdisabledsoasnottointerferewith
automateddrivingsoftware
?Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices
Copyright?SERJON,LLC2024.Allrightsreserved.
CRUISE
?CruiseaccidentOctober2023
?Pedestriancrossesroadagainstdonotwalksignal
?Pedestriangetshalfwayacrossbeforecrosstrafficforcespedestriantowalkback
?Pedestrianhitbyacarandthrownintothepathofcruisevehicle
Copyright?SERJON,LLC2024.Allrightsreserved.
CRUISE
?Cruisevehicleisacceleratingeventhoughit“sees”pedestrian
?Vehicledoesnotrecognizescenario(edgecase)
?PedestriangetstrappedundertheCruisevehicle
?Vehiclesystemrecognizessomethingiswrong
?Insteadofstopping,thevehicledrivesforwardandpullsover,draggingthepedestrianunderthecar
?Whynotstop?
?Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices
Copyright?SERJON,LLC2024.Allrightsreserved.
COMMONAIMISTAKES
Copyright?SERJON,LLC2024.Allrightsreserved.
LACKOFUNDERSTANDINGMODELS
?Mathishard,andlibrariesareeasy
?ThereareTONSofdifferentAImodelsandapproaches
?
TensorFlowiseasyandrequiresalmostnothinking
?
?
AnacondaextendsaccesstoeveryonewhocanPythonAmodelorimplementationinsearchofaproblem
?
Sometimes,neuralnetworksarenotthebestsolution
?
OftenseeproblemssolvedwithMLthatshouldbesolvedbyexpertsystems
?
Lackofunderstandingoflimitations
?
DisconnectbetweenAIandfunctionalsafety
Copyright?SERJON,LLC2024.Allrightsreserved.
DATASCIENCEDISCIPLINE
?Traditionalprogrammingisbasedonrequirements
?AIisbasedonDATA,whichmakesdatasciencecritical
?“Garbagein,garbageout”x1000
?Acommonerroristhatdatasciencelifecyclenotfollowed
?Smalldatasetsforlearningandvalidationareproblematic
?Lackofproperlysizeddatasetsleadto:
?Overfitmodelschasingaccuracy
?Falseminimaandmaximaforoptimizationproblems
?Higherprobabilityeventsarenotincludedinthemodel
?Significantmisclassificationscomparedtoreal-worlddata
Copyright?SERJON,LLC2024.Allrightsreserved.
Experimentationandprediction
DATASCIENCELIFECYCLE
preparation
Data
Explorationandvisualization
?Datacollectionandstorage
?Defineprojectobjectives
?Collectdata
?Normalizestorageandformat
?Explorationandvisualization
?Statisticaldataanalysis
?Datalabeling
?Datapreparation
?Missingorinconsistentdata
?Cleaningandaugmentingdata
?Removingduplicates
?Normalization
?Datalabeling
?Datatypeconversation
?Graphsandchartsforunderstanding
?Experimentationandprediction
?Trydifferentmodelsandapproaches
?Identifydatatrendsandpatterns
?Discoverinsights
?Buildmodel
Data
collection/storage
Source:
/blog/what-is-data-science-the-definitive-guide
Copyright?SERJON,LLC2024.Allrightsreserved.
TRANSPORTATIONAPPLICATIONS
Copyright?SERJON,LLC2024.Allrightsreserved.
ASSISTINGDRIVERS
?Safety-related“assistant”applicationstoreduceimpairedordistracteddriving
?Lane-keepingassist
?Intelligentcruisecontrol
?Automaticemergencybraking
?Limitcellphoneusewhiledriving(cellphone“drivingmode”)
?Limitcellphonedistractionsviapredictivebehaviororvehicleintegration
?Bettermusicplaylistprediction
?Bettermapsanddirections
?Recognizeimpaireddriving
?Inallthesescenarios,thedriverisstillthemaincontrollingactor
Copyright?SERJON,LLC2024.Allrightsreserved.
ANOMALY/ERRORDETECTION
?Vehiclepredictivemaintenance
?Batterylife
?Tirewear
?Many,manymore…..
?MotorfreightcarriersandTSPs
?Analyzebatteryvoltages
?Exhaustsensors
?Noiseandvibrationsensors
?CANbusmessages
?IntermittentDTCs
Copyright?SERJON,LLC2024.Allrightsreserved.
ANOMALY/ERRORDETECTION
?Vehiclecybersecurity[atscale]
?VSOC
?Faultpatterns
?Geolocationtrends
?IndividualvehicleIDSstillproblematic
?Lackoftrainingandvalidationdata
?Rule-basedexpertsystemsareprobablymoreeffective
?CompanionroleforML(seefunctionalsafety“safetybag”examples)
Copyright?SERJON,LLC2024.Allrightsreserved.
GENERALTRANSPORTATION
?TherearemanyapplicationsofAIinTransportationManagementSystems(TMS)andTrafficManagementSystems(TMS)
?Freightmovementoptimization
?Fuelconservation
?Mostefficientroutecalculations
?Trafficmanagement
?Parkingefficiencyandoptimization
Copyright?SERJON,LLC2024.Allrightsreserved.
FUNCTIONAL-SAFETY
?Functionalsafetyiswell-knownpracticewithspecificrulesandknownapproachestoachievingsafety
?Mitigationtechniquestodealwithuncertainty
?Safetybag(thinkinput/outputparametervalidation)
?Safetymonitors
?Diagnostics
?Formalmethods
?Functionalsafetysystemslikecrashavoidanceandlanedepartureassistthatcontainclassifiermodelsarenotprimarysafetysystems
?Driverremainstheprimarysafetysystemincontrolofthevehicle
Copyright?SERJON,LLC2024.Allrightsreserved.
FUNCTIONAL-SAFETY
?Neuralnetwork-basedAIisapoorchoiceforfunctionalsafetysystems
?Testingmassivelycomplexnon-deterministicsystemsisalmostimpossible
?Caveat:FormalmethodscombinedwithML
?Impossibletoexplainwhyamodelbehavesinacertainway
?Introducessafetyrisksandmassivelegalliabilities
Copyright?SERJON,LLC2024.Allrightsreserved.
AUTONOMOUSVEHICLES
?ExistingMLmodelsareunsuitableforSAELevel3–5automation
?Wedonothavethedatatousethemeffectively
?CurrentMLmodelsarenotexplainableortrustworthy
?MoreadvancedMLmodelsarenon-deterministic
?MLissuitableforclassifiersandpreceptorsbutnotatthe
accuracyrequiredforfunctionalsafety
?Closedandcontrolledenvironmentsarepossible
?Real-worldpublicroadsandadversarialenvironmentsaretoocomplexwheresafetystandardscannotbemet
Image:createdbymonkik
Copyright?SERJON,LLC2024.Allrightsreserved.
ATTACKINGAI
Copyright?SERJON,LLC2024.Allrightsreserved.
ATTACKINGAI
?Traditionaltechniquesarestillapplicable
?Denialofserviceattacks
?Softwarestackvulnerabilitiesandexploits
?Hostingandruntimeenvironmentexploitation
?Socialengineering
?TherearenewattackmethodstargetingAI
?MITREAdversarialThreatLandscapeforAI
?OWASPTop10MachineLearningRisks
Copyright?SERJON,LLC2024.Allrightsreserved.
Systems(ATLAS?)
CLASSIFICATIONINPUTMANIPULATION
?Modificationofaninput(e.g.image,sensorvalue)tocause:
?Misclassification
?Triggererrorconditions
?Alterintendedbehavior(inference-basedsystems)
?Acommonexampleisstopsign“modification”:
?Addingtapetocausemisclassification
?Shiningbrightlightsalteringgradientanalysis
?Alargenumberofacademicpapersonhowtomessuptrafficsignalinputs
?FewMLmodelsareimmune
?Distinctfrompromptmanipulation(coveredlater)
Copyright?SERJON,LLC2024.Allrightsreserved.
EXPLOITEDGECASES
?Limitationsofavailabledataallowedgecaseexploitation
?Analyzethemodelanddeterminelow-probabilityinputs
?UseanAItofuzzanotherAImodeltodeterminelimitations
?Causethemodeltobehaveincorrectlyorevencrash
?Especiallyeffectiveifinputandoutputvaluesarenotvalidatedandboundschecked
?Maycausesystemfailureorsoftwarestackmalfunction
?Errorconditionscancauseremotecodeexecutionordataexfiltrationopportunities
Copyright?SERJON,LLC2024.Allrightsreserved.
PROMPTINJECTION/MANIPULATION
?ApplicabletoLLMmodelswhichgenerateoutputbasedonprompts
?OnewaytothinkofthisisasSQLInjectionattacks,butinsteadoftargetingaSQLDB,theunderlyingmodelistargeted
?Injection/promptattackscancause:
?Datadisclosure
?Modelcorruption
?Hostingsystemcorruption
?Bypasssafetyorcontentrestrictions
?Wecanalsousesocialengineeringtrickstogetthemodeltodothingsitisnotsupposedtodo(hardastrickinga4yrold)
Copyright?SERJON,LLC2024.Allrightsreserved.
TRAININGDATAPOISONING
?AImodelsarebuiltfromthetrainingdata
?Duetolackoftrainingdata,manytrainingsetsarebasedonpublicdatasources
?Poisoningapublicdatasetcanintroduce
?Backdoors
?Remotecodeexecutionerrors
?Anynumberofmalwarescenarios
?Feedingmaliciousdataintoacontinuouslearningmodelcancausemodeldriftandeventualmodelfailure
?ContinuouslylearningIDSsystems
?Self-optimizingmodels
Copyright?SERJON,LLC2024.Allrightsreserved.
HACKING
EXAMPLE
Copyright?SERJON,LLC2024.Allrightsreserved.
HACKINGADASMODEL
?BlackhatAsia2024-TheKeytoRemoteVehicleControl:AutonomousDrivingDomainController
?ShupengGao,SeniorSecurityResearcher,Baidu
?YingtaoZeng,SeniorSecurityResearcher,Baidu
?JieGao,SeniorSecurityResearcher,Baidu
?YimiHu,SeniorSecurityResearcher,Baidu
?Analyzedover30ADASdevices
?50%hadSHHenabled
?Somedeployedwithoriginalmodelfiles(*.onnx)
?Littleornodiskencryption
/asia-24/briefings/schedule/index.html#the-key-to-remote-vehicle-control-autonomous-driving-domain-contr
oller-38089
Copyright?SERJON,LLC2024.Allrightsreserved.
HACKINGADASMODEL
?ADASunitcanbeapathwaytototalvehiclecompromiseasitneedstobeaccessibleonCANnetworkandupdateable
?Researchers:
?Abletooffloadentiremodelfiles,includingoriginalmodelfiles
?Abletoreadthemodelanddeployina$50toycar
?Possibletoupdatemodelonoriginaldevice
?PoorlysecuredADASmodulecanleadtototalvehiclecontrol
?Steering
?Braking
?Powertrain
Copyright?SERJON,LLC2024.Allrightsreserved.
DEFENDINGAI
Copyright?SERJON,LLC2024.Allrightsreserved.
AI-WHATISTHESAME?
Themorethingschange,themoretheyremainthesame:
?Softwarestackvulnerabilities
?Operatingsystemvulnerabilities
?Softwaresupplychainattacks
?Hardwarefirmware
?PlatformOS
?Browservulnerabilities
?ITandDevSecOpsbestpracticesstillapply
?Sanitizeandvalidateinputsandoutputs
Copyright?SERJON,LLC2024.Allrightsreserved.
AI-WHAT’SDIFFERENT?
?Systemsarebuiltgroundupfromdata,notrequirements
?Awholenewmindsetforadversarialattackvectors
?Increasedsupplychaincomplexity
?Inputvalidationbecomesharderandmoreimportant
?Datahandlingproceduresaremoreimportant
?Erroneous,mislabeled,orincompletedatacanhavebigimpact
?DevSecOpsneedstoincorporatedataandmachinelearningmodels
?Datascientistsneedtounderstandcybersecurity
Copyright?SERJON,LLC2024.Allrightsreserved.
AI–DEFENSIVEBESTPRACTICES
Whilenotanexhaustivelist,herearesomebestpractices:
?ProtectsystemboundariesbetweenITandAI
?Identifyandprotectallproprietarydata
?StrongaccessandauthorizationcontrolsforfinalAImodelweights
?Hardenthedeploymentenvironment
?Applyversionlabelstomodels(changestoweights)
?Validateallinputsforedgecasesandattacks
?Validatealloutputstoensureoperationinsideboundaries(safetybag)
Copyright?SERJON,LLC2024.Allrightsreserved.
DEFENSIVERESOURCES
ThereareseveralrecentgoodpublicationsoncybersecuritybestpracticesfordeployingmachinelearningandAIingeneral:
?NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachine
learning
.uk/collection/machine-learning
?NationalCyberSecurityCentre(UK)–GuidelinesforsecureAIsystem
development
.uk/collection/guidelines-secure-ai-system-development
?JointCybersecurityInformation-DeployingAISystemsSecurely
/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-
SYSTEMS-SECURELY.PDF
Copyright?SERJON,LLC2024.Allrightsreserved.
WRAP-UP
Copyright?SERJON,LLC2024.Allrightsreserved.
AIFUTURE
?Improvementsincustomerservice
?Improvementsinoperationalefficiency
?Developingbetterdesigns
?Assistingindevelopmentofnewmaterials
?Inspectingandevaluatinginfrastructure
?Improvingsafetythroughnewdriverassistancefeatures
?Increasefleetuptime
……ExplainableandtrustworthyAIwillbringmoreapplications
Copyright?SERJON,LLC2024.Allrightsreserved.
FURTHERREADING
IfyouarenewtoAI/ML,Icanhighlyrecommendthefollowingbookasagoodstartingpoint
?Ozdemir,S.,Kakade,S.,&Tibaldeschi,M.(2018).PrincipalsofDataScience(2nded.).PacktPublishing.
/product/principles-of-data
-science-second-edition/9781789804546
Ifyouarelookingforamorein-depthfoundationalbook,Iwouldrecommendthefollowingbook:
?Kelleher,J.D.,MacNamee,B.,&D’Arcy,A.(2015).FundamentalsofMachineLearningforPredictiveDataAnalytics.TheMITPress.
Copyright?SERJON,LLC2024.Allrightsreserved.
FURTHERREADING
Forthosewhowanttogettotheheartofthemathandbuildyourownmodels,includingdeepregressionlearning,Iwouldrecommendthefollowingbook:
?Goodfellow,I.,Bengio,Y.,&Courville,A.(2017).DeepLearning.TheMITPress.Iwouldalsorecommendthefollowingpaperformoreinformationaboutsafety-criticalAIapplicationsintransportationtohelptietogethertheuseofAIintransportation:
?JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,Jesús
Cerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,George
Nikolakopoulos,andJoseLuisFlores.2024.ArtificialIntelligenceforSafety-CriticalSystemsin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物業(yè)租賃中的讓與擔(dān)保 甲方與乙方合同范本
- 2025年度體育賽事代理合同終止及賽事推廣合作協(xié)議4篇
- 2025年度商鋪物業(yè)管理與應(yīng)急響應(yīng)預(yù)案合同4篇
- 2025年度變壓器租賃及電力設(shè)備租賃期滿續(xù)租合同3篇
- 2024藝人廣告代言服務(wù)合同范本
- 2025年度主題餐廳投資合作協(xié)議范本3篇
- 2025年度水果種植基地與電商平臺合作合同3篇
- 2024跨境電子商務(wù)融資代建合同
- 2025年度安全生產(chǎn)信息化服務(wù)合同范本3篇
- 2025年度新能源汽車充電站車棚建設(shè)與運(yùn)營承包合同4篇
- 2024高考復(fù)習(xí)必背英語詞匯3500單詞
- 消防控制室值班服務(wù)人員培訓(xùn)方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護(hù)理)專業(yè)綜合知識考試題庫(含答案)
- 無人機(jī)應(yīng)用平臺實施方案
- 挪用公款還款協(xié)議書范本
- 事業(yè)單位工作人員年度考核登記表(醫(yī)生個人總結(jié))
- 盾構(gòu)隧道施工數(shù)字化與智能化系統(tǒng)集成
- 【企業(yè)盈利能力探析文獻(xiàn)綜述2400字】
- 2019年醫(yī)養(yǎng)結(jié)合項目商業(yè)計劃書
- 2023年店鋪工程主管年終業(yè)務(wù)工作總結(jié)
評論
0/150
提交評論