河南省商丘市九校2025屆高三第六次模擬考試數(shù)學試卷含解析_第1頁
河南省商丘市九校2025屆高三第六次模擬考試數(shù)學試卷含解析_第2頁
河南省商丘市九校2025屆高三第六次模擬考試數(shù)學試卷含解析_第3頁
河南省商丘市九校2025屆高三第六次模擬考試數(shù)學試卷含解析_第4頁
河南省商丘市九校2025屆高三第六次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省商丘市九校2025屆高三第六次模擬考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點(m,8)在冪函數(shù)的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b2.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q3.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.34.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.5.已知拋物線經過點,焦點為,則直線的斜率為()A. B. C. D.6.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.67.二項式的展開式中,常數(shù)項為()A. B.80 C. D.1608.設一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發(fā),每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.9.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種10.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.11.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或12.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)恰好有3個不同的零點,則實數(shù)的取值范圍為____14.曲線y=e-5x+2在點(0,3)處的切線方程為________.15.已知是夾角為的兩個單位向量,若,,則與的夾角為______.16.設為銳角,若,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.18.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點,并求公共點的軌跡E的方程;(1)已知點Q(m,0)(m<0),過點E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點,記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.19.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.20.(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右頂點到右焦點的距離與它到右準線的距離之比為.(1)求橢圓的標準方程;(2)若是橢圓上關于軸對稱的任意兩點,設,連接交橢圓于另一點.求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍.21.(12分)設數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.22.(10分)設函數(shù).(1)求的值;(2)若,求函數(shù)的單調遞減區(qū)間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調遞增,再利用冪函數(shù)f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數(shù)的性質,以及利用函數(shù)的單調性比較函數(shù)值大小,屬于中檔題.2、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。3、D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.4、D【解析】

先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.5、A【解析】

先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.6、A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.7、A【解析】

求出二項式的展開式的通式,再令的次數(shù)為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.8、D【解析】

由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據求數(shù)列的通項知識可得選項.【詳解】由題意,設第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當時,,故選:D.【點睛】本題考查幾何體中的概率問題,關鍵在于運用遞推的知識,得出相鄰的項的關系,這是常用的方法,屬于難度題.9、C【解析】

根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數(shù)原理問題,屬于基礎題.10、C【解析】

利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.11、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.12、C【解析】

結合不等式、三角函數(shù)的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數(shù)的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

恰好有3個不同的零點恰有三個根,然后轉化成求函數(shù)值域即可.【詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【點睛】已知函數(shù)的零點個數(shù)求參數(shù)的取值范圍是重點也是難點,這類題一般用分離參數(shù)的方法,中檔題.14、.【解析】

先利用導數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數(shù)的幾何意義和函數(shù)的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,相應的切線方程是15、【解析】

依題意可得,再根據求模,求數(shù)量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數(shù)量積的運算律,以及夾角的計算,屬于基礎題.16、【解析】

∵為銳角,,∴,∴,,故.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據面,將問題轉化為求到面的距離,利用等體積法求點面距離即可.【詳解】(1)因為棱柱是直三棱柱,所以又,所以面又,分別為AB,BC的中點所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點到平面的距離等于點到平面的距離設點到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于【點睛】本題考查由線面垂直推證面面垂直,涉及利用等體積法求點面距離,屬綜合中檔題.18、(1)見解析,(1)存在,【解析】

(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點求出的范圍,從而根據可得點的軌跡,進而求出方程;(1)過點且斜率為的直線方程為,設,,聯(lián)立直線方程和橢圓方程,根據韋達定理以及,,可得,根據其為定值,則有,進而可得結果.【詳解】(1)因為,,所以,因為圓的半徑為,圓的半徑為,又因為,所以,即,所以圓與圓有公共點,設公共點為,因此,所以點的軌跡是以,為焦點的橢圓,所以,,,即軌跡的方程為;(1)過點且斜率為的直線方程為,設,由消去得到,則,,①因為,,所以,將①式代入整理得因為,所以當時,即時,.即存在實數(shù)使得.【點睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值問題,靈活應用韋達定理進行計算是關鍵,并且觀察出取定值的條件也很重要,考查了學生分析能力和計算能力,是中檔題.19、(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,,即可求得答案;(2)先根據已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.20、(1);(2)證明詳見解析,;(3).【解析】

(1)根據題意列出關于的等式求解即可.(2)先根據對稱性,直線過的定點一定在軸上,再設直線的方程為,聯(lián)立直線與橢圓的方程,進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達定理再代入求解出關于的解析式,再求解范圍即可.【詳解】解:設橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設直線的方程為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論