版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆上海外國語大學(xué)附屬外國語學(xué)校高三沖刺模擬數(shù)學(xué)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.2.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.3.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件4.已知實數(shù)滿足約束條件,則的最小值是A. B. C.1 D.45.已知,,,,.若實數(shù),滿足不等式組,則目標函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值6.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.7.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.8.雙曲線的漸近線方程為()A. B. C. D.9.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或10.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.11.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-1312.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是定義在上的奇函數(shù),則的值為__________.14.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.15.在的展開式中的系數(shù)為,則_______.16.已知實數(shù)滿足(為虛數(shù)單位),則的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.18.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項和,求證:Sn.19.(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當(dāng)時,求此時四邊形的面積.20.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù)(I)當(dāng)時,解不等式.(II)若不等式恒成立,求實數(shù)的取值范圍22.(10分)設(shè)(1)當(dāng)時,求不等式的解集;(2)若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.2、C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.3、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.4、B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過點時,z取得最小值,由,解得,所以,所以,故選B.5、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.6、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設(shè),故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.7、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.8、C【解析】
根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.9、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.10、C【解析】
利用對數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時選擇合適的中間值比較是關(guān)鍵,注意合理地進行等價轉(zhuǎn)化.11、B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運算求解能力.12、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學(xué)生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數(shù),則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數(shù)的化簡,三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識的應(yīng)用能力和計算能力,是基礎(chǔ)題.14、【解析】
如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關(guān)鍵.15、2【解析】
首先求出的展開項中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時有,解得.故答案為:.【點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.16、【解析】
由虛數(shù)單位的性質(zhì)結(jié)合復(fù)數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查虛數(shù)單位的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.18、(Ⅰ)(Ⅱ)證明見解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯位相減法求出,運用分析法證明即可.【詳解】(Ⅰ),當(dāng)為奇數(shù)時,,又由,得,當(dāng)為偶數(shù)時,,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點睛】本題主要考查了由遞推公式求通項公式,錯位相減法求前項和,分析法證明不等式,考查了分類討論的思想,考查了學(xué)生的運算求解與邏輯推理能力.19、(1)(2)【解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),,列出韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設(shè),∴.∵,∴,∴設(shè)直線的方程為,∴,∴,顯然恒成立.設(shè),,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時直線的方程為,,∴點到直線的距離為,∴,即此時四邊形的面積為.【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的綜合應(yīng)用,考查計算能力,屬于中檔題.20、(1)(2)【解析】
(1)當(dāng)時,,當(dāng)或時,,所以可轉(zhuǎn)化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當(dāng)時,因為,所以,不符合題意.當(dāng)時,解可得,因為當(dāng)時,不等式恒成立,所以,所以,解得,所以實數(shù)的取值范圍為.21、(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據(jù)零點分區(qū)間法,去掉絕對值解不等式;(2)根據(jù)絕對值不等式的性質(zhì)得,因此將問題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當(dāng)時,不等式恒成立;當(dāng)時,解不等式得.綜上.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋戶外景觀停車場施工合同
- 圖書館木門安裝合同
- 設(shè)備租賃合同:科研儀器租賃模板
- 汕頭賽車場租賃合同
- 太陽能工程監(jiān)理協(xié)議
- 會計師事務(wù)所續(xù)租合同
- 員工離職后知識產(chǎn)權(quán)協(xié)議書
- 石油企業(yè)安全員聘用合同模板
- 藝術(shù)園區(qū)共建租賃合同
- 能源供應(yīng)合同備案規(guī)則
- 施工安全管理經(jīng)驗分享
- 陜09J01 建筑用料及做法圖集
- 安全生產(chǎn)責(zé)任清單培訓(xùn)會
- 湖北省武漢市江漢區(qū)2023-2024學(xué)年五年級上學(xué)期期末語文試題
- 幕墻維護與保養(yǎng)技術(shù)
- 美容門診感染管理制度
- 2023年電商高級經(jīng)理年度總結(jié)及下一年計劃
- 模具開發(fā)FMEA失效模式分析
- 1-3-二氯丙烯安全技術(shù)說明書MSDS
- 學(xué)生思想政治工作工作證明材料
- 一方出資一方出力合作協(xié)議
評論
0/150
提交評論