版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省紅河州瀘源中學(xué)2025屆高考數(shù)學(xué)四模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-2.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.3.A. B. C. D.4.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.5.設(shè)F為雙曲線C:(a>0,b>0)的右焦點,O為坐標(biāo)原點,以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.6.點在曲線上,過作軸垂線,設(shè)與曲線交于點,,且點的縱坐標(biāo)始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為()A.0 B.1 C.2 D.37.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.8.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.9.已知向量,,若,則()A. B. C. D.10.明代數(shù)學(xué)家程大位(1533~1606年),有感于當(dāng)時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.11.已知函數(shù)滿足:當(dāng)時,,且對任意,都有,則()A.0 B.1 C.-1 D.12.設(shè)是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標(biāo)原點),且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)圖象上一點處的切線方程為,則_______.14.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.15.若,則的最小值為________.16.已知,復(fù)數(shù)且(為虛數(shù)單位),則__________,_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.18.(12分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費用(百萬元)2361021131518產(chǎn)品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當(dāng)時,不設(shè)獎;當(dāng)時,每位員工每日獎勵200元;當(dāng)時,每位員工每日獎勵300元;當(dāng)時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.19.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.20.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉(zhuǎn)得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時,求二面角的正弦值.21.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.22.(10分)已知函數(shù),其中.(1)當(dāng)時,求在的切線方程;(2)求證:的極大值恒大于0.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.2、D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.3、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.4、D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因為復(fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.5、A【解析】
準(zhǔn)確畫圖,由圖形對稱性得出P點坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習(xí),才能在解決此類問題時事半功倍,信手拈來.6、C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導(dǎo)函數(shù)處理零點問題,考查向量的坐標(biāo)運算,考查零點存在性定理的應(yīng)用.7、D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.9、A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標(biāo)運算,屬于基礎(chǔ)題.10、C【解析】
根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學(xué)生的理解能力和計算能力.11、C【解析】
由題意可知,代入函數(shù)表達式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關(guān)性質(zhì),難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
求出導(dǎo)函數(shù),由切線方程得切線斜率和切點坐標(biāo),從而可求得.【詳解】由題意,∵函數(shù)圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),14、20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構(gòu)成公差為的等差數(shù)列,偶數(shù)項構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時,,.當(dāng)時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關(guān)鍵.15、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時等號成立,所以,當(dāng)且僅當(dāng)時取等號,所以當(dāng)時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件。16、【解析】∵復(fù)數(shù)且∴∴∴∴,故答案為,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時,在上單調(diào)遞增,時,在上遞減,在上遞增.(2).【解析】
(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時,,單調(diào)遞增;時,令得,時,,遞減,時,,遞增,綜上所述,時,在上單調(diào)遞增,時,在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點,則或.當(dāng)時,,,從而只需時,恒成立,即,令,,在上遞減,在上遞增,∴,從而.時,,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點個數(shù)與不等式恒成立問題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過導(dǎo)數(shù)求解.18、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數(shù)μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計算獎金總數(shù)是多少.【詳解】(Ⅰ)因為,,因為,所以,所以;(Ⅱ)因為,所以,故即,日銷量的概率為,日銷量的概率為,日銷量的概率為,所以獎金總數(shù)大約為:(元).【點睛】本題考查利用最小二乘法求回歸直線方程,還考查了利用正態(tài)分布計算概率,進而估計總體情況,屬于中檔題.19、(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點坐標(biāo),用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.20、(1)見解析;(2)【解析】
(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點,以,,的方向為,,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運算求解能力,是一道中檔題.21、(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設(shè),其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點睛】本題考查正弦定理和余弦定理的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村土地整治挖掘機施工協(xié)議
- 社會福利彩鋼板安裝合同樣本
- 學(xué)校藥品器材安全警示標(biāo)識
- 實驗室事故報告流程
- 電子產(chǎn)品生產(chǎn)資產(chǎn)管理指南
- 2024年藝人演藝事業(yè)發(fā)展規(guī)劃3篇
- 油氣開采挖機設(shè)備租賃合同
- 高鐵工程預(yù)應(yīng)力施工協(xié)議
- 軌道車物料成本優(yōu)化
- 鐵路建設(shè)臨時用電服務(wù)合同
- 人教版八年級上冊 第十二章12.1 全等三角形復(fù)習(xí)課 教案
- 機械原理課程設(shè)計設(shè)計加熱爐推料機傳動裝置
- 立井井筒裝備方案
- 臨床試驗樣本量簡易計算器
- 給我店周邊各企事業(yè)單位領(lǐng)導(dǎo)贈送體驗券方案的請示
- 世界氣候分布圖(空白輪廓底圖)
- 山東省建設(shè)工程質(zhì)量監(jiān)督檔案樣表
- 天津市工傷職工停工留薪期確定通知書
- 小學(xué)二年級數(shù)學(xué)期末口試模擬試題
- 中國地理分區(qū)空白圖(共5頁)
- 豐田質(zhì)量三不政策的確運用
評論
0/150
提交評論