版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆四川省廣安市鄰水縣鄰水實驗學校高三考前熱身數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.42.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則3.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.4.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20175.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.6.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.7.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度8.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為()A. B. C. D.9.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數(shù)的圖象交于點Q,且該冪函數(shù)在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.10.已知等比數(shù)列滿足,,則()A. B. C. D.11.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.12.已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項和,若,,則_______.14.復數(shù)為虛數(shù)單位)的虛部為__________.15.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.16.正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實數(shù)的取值范圍.18.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.19.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.20.(12分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設點為拋物線的焦點,當面積最小時,求直線的方程.21.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.22.(10分)已知函數(shù).(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.2、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.3、B【解析】
由,,三點共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.4、D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.5、C【解析】
畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于常考題.6、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.7、C【解析】
根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點睛】本題考查三角函數(shù)圖像的平移,涉及誘導公式的使用,屬基礎題.8、A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術(shù)可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.9、B【解析】
由已知可求出焦點坐標為,可求得冪函數(shù)為,設出切點通過導數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F(xiàn)關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點坐標,求冪函數(shù)解析式,直線的斜率公式及導數(shù)的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.10、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.11、A【解析】
根據(jù)向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.12、D【解析】
依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以.故答案為1.【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應用.14、1【解析】試題分析:,即虛部為1,故填:1.考點:復數(shù)的代數(shù)運算15、【解析】
根據(jù)個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.16、【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運算求解的能力,屬于難題,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,在上單調(diào)遞增;當時,在上單調(diào)遞減,在上單調(diào)遞增;當時,在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當時,,在上單調(diào)遞增;當時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當時,在上單調(diào)遞增;當時,在上單調(diào)遞減,在上單調(diào)遞增;當時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當時,,∴成立.當時,,,∴.當時,,,∴,即.綜上.【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.19、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當時,不等式恒成立,分離參數(shù)只需時,恒成立,設(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點睛】本題考查導數(shù)的綜合應用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點、極值最值、不等式的證明,分離參數(shù)是解題的關鍵,意在考查邏輯推理、數(shù)學計算能力,屬于較難題.20、(1);(2)【解析】
(1)設出兩點的坐標,由距離之積為16,可得.利用向量的數(shù)量積坐標運算,將轉(zhuǎn)化為.再利用兩點均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設出直線l的方程,代入拋物線方程,由韋達定理發(fā)現(xiàn)直線l恒過定點,將面積用參數(shù)t表示,求出其最值,并得出此時的直線方程.【詳解】解:(1)由題設,因為,到軸的距離的積為,所以,又因為,,,所以拋物線的方程為.(2)因為直線與拋物線兩個公共點,所以的斜率不為,所以設聯(lián)立,得,即,,即直線恒過定點,所以,當時,面積取得最小值,此時.【點睛】本題考查了拋物線的標準方程的求法,直線與拋物線相交的問題,其中垂直條件的轉(zhuǎn)化,直線過定點均為該題的關鍵,屬于綜合性較強的題.21、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度跨境電商平臺運營與推廣服務合同2篇
- 2025年度玻璃隔斷安裝工程合同糾紛處理與爭議解決合同2篇
- 二零二五版二手房買賣合同范本(含按揭貸款及裝修款支付)3篇
- 二零二五版家政服務人員勞動保障合同范本3篇
- 2024碎石原料交易平臺運營合同
- 中介公司月嫂服務協(xié)議標準版2024版A版
- 4S店租賃新規(guī):2024版汽車租賃協(xié)議一
- 2024教育培訓勞務承包合同
- 天津工業(yè)職業(yè)學院《無機化學(4)》2023-2024學年第一學期期末試卷
- 二零二五年礦山爆破作業(yè)承包合同3篇
- 2024年四川省成都市錦江區(qū)中考數(shù)學一診試卷(附答案解析)
- 小學生中醫(yī)藥文化知識科普傳承中醫(yī)文化弘揚國粹精神課件
- ASME材料-設計許用應力
- 吸痰護理操作
- 室內(nèi)燈光設計總結(jié)報告
- 子宮動脈栓塞術(shù)后的護理
- 五年級數(shù)學(小數(shù)乘法)計算題及答案
- 第十七章-阿法芙·I·梅勒斯的轉(zhuǎn)變理論
- 計算機應用技術(shù)專業(yè)匯報課件
- 檔案基礎業(yè)務培訓課件
- 中醫(yī)門診病歷
評論
0/150
提交評論