2025屆江蘇省淮安市高三第五次模擬考試數(shù)學試卷含解析_第1頁
2025屆江蘇省淮安市高三第五次模擬考試數(shù)學試卷含解析_第2頁
2025屆江蘇省淮安市高三第五次模擬考試數(shù)學試卷含解析_第3頁
2025屆江蘇省淮安市高三第五次模擬考試數(shù)學試卷含解析_第4頁
2025屆江蘇省淮安市高三第五次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省淮安市高三第五次模擬考試數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種2.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.3.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關于坐標原點對稱,則的最小值為()A. B. C. D.4.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1005.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.26.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差7.中,點在邊上,平分,若,,,,則()A. B. C. D.8.已知向量,是單位向量,若,則()A. B. C. D.9.己知函數(shù)的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.10.已知定義在R上的函數(shù)(m為實數(shù))為偶函數(shù),記,,則a,b,c的大小關系為()A. B. C. D.11.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.12.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足對任意,若,則數(shù)列的通項公式________.14.為了了解一批產(chǎn)品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據(jù)產(chǎn)品標準,單件產(chǎn)品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.15.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.18.(12分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當三棱錐的體積取最大值時,求平面與平面所成角的正弦值.19.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.20.(12分)中,內角的對邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.21.(12分)已知函數(shù).(1)當時,解關于x的不等式;(2)當時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.22.(10分)已知a>0,證明:1.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數(shù)原理問題,屬于基礎題.2、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.3、B【解析】

由余弦的二倍角公式化簡函數(shù)為,要想在括號內構造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.4、B【解析】

根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.5、B【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.6、D【解析】

ABD可通過統(tǒng)計圖直接分析得出結論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關鍵是能通過所給統(tǒng)計圖,分析出對應的信息,對學生分析問題的能力有一定要求.7、B【解析】

由平分,根據(jù)三角形內角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.8、C【解析】

設,根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設,,是單位向量,,,,聯(lián)立方程解得:或當時,;當時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.9、A【解析】

先將函數(shù)解析式化簡為,結合題意可求得切點及其范圍,根據(jù)導數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個公共點,結合圖象知直線與函數(shù)相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質的綜合應用,由交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.10、B【解析】

根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調性去比較函數(shù)值大?。?1、D【解析】

設等比數(shù)列的公比為q,,運用等比數(shù)列的性質和通項公式,以及等差數(shù)列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.12、C【解析】

先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結合的思想、轉化與化歸的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由可得,利用等比數(shù)列的通項公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結論.【詳解】由,得,數(shù)列是等比數(shù)列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數(shù)列的通項公式,遞推公式轉化為等比數(shù)列是解題的關鍵,利用累加法求通項公式,屬于中檔題.14、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長度在區(qū)間,和內,根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區(qū)間內的頻率,把小矩形的高視為頻率時常犯的錯誤.15、【解析】

二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數(shù)k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數(shù)值,屬于中檔題.16、【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數(shù)在函數(shù)當中的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數(shù)方程與普通方程的互化知識,解題的關鍵是正確使用這一轉化公式,還考查了直線與圓的位置關系等知識.18、(Ⅰ)見解析.(Ⅱ).【解析】

(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結論;(II)當平面時,棱錐體積最大,建立空間坐標系,計算兩平面的法向量,計算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點,,又平面平面,又平面平面平面(II),為定值當平面時,三棱錐的體積取最大值以為原點,以為坐標軸建立空間直角坐標系則,設平面的法向量為,則即,令可得平面是平面的一個法向量平面與平面所成角的正弦值為【點睛】本題考查了面面垂直的判定,二面角的計算,關鍵是能夠根據(jù)體積的最值確定垂直關系,從而可以建立起空間直角坐標系,利用空間向量法求得二面角,屬于中檔題.19、(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設出兩點的坐標,利用導數(shù)求得切線的方程,由此求得點的坐標.寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設,∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設直線的傾斜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論