




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年北師大版高一數(shù)學下冊月考試卷962考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共8題,共16分)1、若a=20.5,b=logπ3,c=log20.5;則()
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a
2、函數(shù)則=()
A.
B.
C.
D.
3、【題文】設(shè)集合集合則集合()A.{1,3,1,2,4,5}B.C.D.4、【題文】已知實數(shù)滿足且若為方程的兩個實數(shù)根,則的取值范圍為【】.A.B.C.D.5、【題文】定義在上的函數(shù)滿足下列兩個條件:⑴對任意的恒有成立;⑵當時,記函數(shù)若函數(shù)恰有兩個零點,則實數(shù)的取值范圍是A.B.C.D.6、【題文】若函數(shù)的定義域和值域都是[0,1],則a=()A.B.C.D.27、已知A={x∈z|2x2+x-1=0}、B={x|4x2+1=0}.則A∪B=()A.{--1}B.{}C.{-1}D.{-1}8、不論m為何值,直線(m-1)x+(2m-1)y=m-5恒過定點()A.B.(-2,0)C.(2,3)D.(9,-4)評卷人得分二、填空題(共8題,共16分)9、如圖示,一個幾何體的俯視圖是正三角形,則底面三角形的高為____.
10、的最小正周期是____.11、若=2e1+e2,=e1-3e2,=5e1+λe2,且B、C、D三點共線,則實數(shù)λ=__________.12、若則的取值范圍是13、在等差數(shù)列中,若則.14、【題文】在不考慮空氣阻力的情況下,火箭的最大速度v(單位:m/s)和燃料的質(zhì)量M(單位:kg)、火箭(除燃料外)的質(zhì)量m(單位:kg)的函數(shù)關(guān)系式為v=2000ln當燃料質(zhì)量是火箭質(zhì)量的________倍時,火箭的最大速度可以達到12km/s.15、若α+β=則(1﹣tanα)(1﹣tanβ)的值為____.16、設(shè)e1鈫?,e2鈫?
是兩個不共線的向量,已知AB鈫?=2e1鈫?+me2鈫?,BC鈫?=e1鈫?+3e2鈫?
若ABC
三點共線,則實數(shù)m=
______.評卷人得分三、證明題(共7題,共14分)17、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.18、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.19、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點;
(2)若CF=3,DE?EF=,求EF的長.20、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.21、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.22、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點;
(2)若CF=3,DE?EF=,求EF的長.23、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、作圖題(共2題,共20分)24、作出下列函數(shù)圖象:y=25、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應的程序框圖.
評卷人得分五、綜合題(共3題,共12分)26、如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(4;0);與y軸正半軸交于點E(0,4),邊長為4的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合;
(1)求拋物線的函數(shù)表達式;
(2)如圖2;若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點P且同時與邊CD交于點Q.設(shè)點A的坐標為(m,n)
①當PO=PF時;分別求出點P和點Q的坐標及PF所在直線l的函數(shù)解析式;
②當n=2時;若P為AB邊中點,請求出m的值;
(3)若點B在第(2)①中的PF所在直線l上運動;且正方形ABCD與拋物線有兩個交點,請直接寫出m的取值范圍.
27、已知開口向上的拋物線y=ax2+bx+c與x軸交于A(-3;0);B(1,0)兩點,與y軸交于C點,∠ACB不小于90°.
(1)求點C的坐標(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點為D;求△BCD中CD邊上的高h的最大值.
(4)設(shè)E,當∠ACB=90°,在線段AC上是否存在點F,使得直線EF將△ABC的面積平分?若存在,求出點F的坐標;若不存在,說明理由.28、數(shù)學課上;老師提出:
如圖,在平面直角坐標系中,O為坐標原點,A點的坐標為(1,0),點B在x軸上,且在點A的右側(cè),AB=OA,過點A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點C和D,直線OC交BD于點M,直線CD交y軸于點H,記點C、D的橫坐標分別為xC、xD,點H的縱坐標為yH.
同學發(fā)現(xiàn)兩個結(jié)論:
①S△CMD:S梯形ABMC=2:3②數(shù)值相等關(guān)系:xC?xD=-yH
(1)請你驗證結(jié)論①和結(jié)論②成立;
(2)請你研究:如果上述框中的條件“A的坐標(1;0)”改為“A的坐標(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請說明理由);
(3)進一步研究:如果上述框中的條件“A的坐標(1,0)”改為“A的坐標(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)參考答案一、選擇題(共8題,共16分)1、A【分析】
∵20.5>2=1,0<logπ3<logππ=1,log20.5<log21=0;
∴a>b>c.
故選A.
【解析】【答案】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)即可得出.
2、A【分析】
∵函數(shù)
∴=
=
=-
故選A.
【解析】【答案】根據(jù)所給的函數(shù)式;代入自變量的值,是一個分數(shù)指數(shù)的運算,要先把分數(shù)指數(shù)形式變化為根式形式,還有一個負指數(shù)的整理,最后合并同類項,得到結(jié)果.
3、C【分析】【解析】因為集合A={1,3},B={1,2,4,5}因此故選C.【解析】【答案】C4、A【分析】【解析】解:由題意得到且說明a>0,C<0,則利用為方程的兩個實數(shù)根;有。
因為因此選擇A【解析】【答案】A5、C【分析】【解析】因為所以
當時,則
當時,則
當有
所以圖象大致如下:
恰有兩個零點,則函數(shù)與過定點且斜率存在的直線恰有兩個交點,結(jié)合圖形可得,當直線經(jīng)過點時,取到最小值而最大不能超過經(jīng)過點的直線,即綜上可得,故選C?!窘馕觥俊敬鸢浮緾6、A【分析】【解析】要使函數(shù)。
的值域都是[0,1],需使解得故選A【解析】【答案】A7、C【分析】解:由2x2+x-1=0,得x=-1或x=
∴A={x∈z|2x2+x-1=0}={-1}.
又B={x|4x2+1=0}=?;
∴A∪B={-1}.
故選:C.
求解一元二次方程化簡A;B,然后直接利用并集運算求解.
本題考查了并集及其運算,考查了一元二次方程的解法,是基礎(chǔ)題.【解析】【答案】C8、D【分析】解:∵(m-1)x+(2m-1)y=m-5;
∴m(x+2y-1)-x-y+5=0;
∵不論m為何值;直線(m-1)x+(2m-1)y=m-5恒過定點;
∴
解得:.
∴直線(m-1)x+(2m-1)y=m-5恒過定點(9;-4).
故選:D.
(m-1)x+(2m-1)y=m-5?m(x+2y-1)-x-y+5=0,解方程組即可求得答案.
本題考查恒過定點的直線,考查轉(zhuǎn)化思想與方程思想的綜合應用,屬于中檔題.【解析】【答案】D二、填空題(共8題,共16分)9、略
【分析】
由題意可知;三視圖的側(cè)視圖與俯視圖的寬相等;
所以底面三角形的高為:2.
故答案為:2.
【解析】【答案】利用三視圖的基本知識;推出側(cè)視圖的寬就是俯視圖三角形的高,然后求出結(jié)果.
10、略
【分析】
∵y=sinx的周期為2π;
∴y=3sin(+)的周期為==4π.
故答案為:4π
【解析】【答案】根據(jù)y=sinx的周期為2π,可知y=Asin(ωx+φ)的周期為T=代入計算即可.
11、略
【分析】:待定系數(shù)法:由已知可得=-=(e1-3e2)-(2e1+e2)=-e1-4e2,=-=(5e1+λe2)-(e1-3e2)=4e1+(λ+3)e2,由于B、C、D三點共線,所以存在實數(shù)m使得=m即-e1-4e2=m[4e1+(λ+3)e2].所以消去m得λ=13.【解析】【答案】1312、略
【分析】【解析】【答案】____13、略
【分析】試題分析:利用考點:等差數(shù)列的前n項和公式,等差數(shù)列的性質(zhì)【解析】【答案】42014、略
【分析】【解析】由2000ln=12000,得1+=e6,所以=e6-1.【解析】【答案】e6-115、2【分析】【解答】解:若α+β=則tan(α+β)=﹣1=∴tanα+tanβ=tanαtanβ﹣1.
∴(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣(tanαtanβ﹣1)+tanαtanβ=2;
故答案為:2.
【分析】由題意可得tan(α+β)=﹣1=即tanα+tanβ=tanαtanβ﹣1,代入(1﹣tanα)(1﹣tanβ)的展開式,化簡可得結(jié)果.16、略
【分析】解:隆脽e1鈫?,e2鈫?
是兩個不共線的向量,AB鈫?=2e1鈫?+me2鈫?,BC鈫?=e1鈫?+3e2鈫?
若ABC
三點共線;
隆脿AB鈫?=婁脣BC鈫?
即2e1鈫?+me2鈫?=婁脣e1鈫?+3婁脣e2鈫?
隆脿{m=3位2=位
解得實數(shù)m=6
.
故答案為:6
.
由已知得AB鈫?=婁脣BC鈫?
即2e1鈫?+me2鈫?=婁脣e1鈫?+3婁脣e2鈫?
由此能求出實數(shù)m
.
本題考查實數(shù)值的求法,考查平面向量坐標運算法則、向量平行等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.【解析】6
三、證明題(共7題,共14分)17、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.18、略
【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.19、略
【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點.
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=20、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.21、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.22、略
【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點.
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=23、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.四、作圖題(共2題,共20分)24、【解答】冪函數(shù)y={#mathml#}x32
{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點且單調(diào)遞增,如圖所示;
【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.25、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.五、綜合題(共3題,共12分)26、略
【分析】【分析】(1)已知拋物線的對稱軸是y軸;頂點是(0,4),經(jīng)過點(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)①過點P作PG⊥x軸于點G;根據(jù)三線合一定理可以求得G的坐標,則P點的橫坐標可以求得,把P的橫坐標代入拋物線的解析式,即可求得縱坐標,得到P的坐標,再根據(jù)正方形的邊長是4,即可求得Q的縱坐標,代入拋物線的解析式即可求得Q的坐標,然后利用待定系數(shù)法即可求得直線PF的解析式;
②已知n=2;即A的縱坐標是2,則P的縱坐標一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標,根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標,從而求得m的值;
(3)假設(shè)B在M點時,C在拋物線上或假設(shè)當B點在N點時,D點同時在拋物線上時,求得兩個臨界點,當B在MP和FN之間移動時,拋物線與正方形有兩個交點.【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過點E(0;4),F(xiàn)(4,0)
,解得;
∴y=-x2+4;
(2)①過點P作PG⊥x軸于點G;
∵PO=PF∴OG=FG
∵F(4;0)∴OF=4
∴OG=OF=×4=2;即點P的橫坐標為2
∵點P在拋物線上。
∴y=-×22+4=3;即P點的縱坐標為3
∴P(2;3)
∵點P的縱坐標為3;正方形ABCD邊長是4,∴點Q的縱坐標為-1
∵點Q在拋物線上,∴-1=-x2+4
∴x1=2,x2=-2(不符題意;舍去)
∴Q(2;-1)
設(shè)直線PF的解析式是y=kx+b;
根據(jù)題意得:;
解得:,
則直線的解析式是:y=-x+6;
②當n=2時;則點P的縱坐標為2
∵P在拋物線上,∴2=-x2+4
∴x1=2,x2=-2
∴P的坐標為(2,2)或(-2;2)
∵P為AB中點∴AP=2
∴A的坐標為(2-2,2)或(-2-2;2)
∴m的值為2-2或-2-2;
(3)假設(shè)B在M點時;C在拋物線上,A的橫坐標是m,則B的橫坐標是m+4;
代入直線PF的解析式得:y=-(m+4)+6=-m;
則B的縱坐標是-m,則C的坐標是(m+4,-m-4).
把C的坐標代入拋物線的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);
當B在E點時;AB經(jīng)過拋物線的頂點,則E的縱坐標是4;
把y=4代入y=-x+6,得4=-x+6,解得:x=;
此時A的坐標是(-,4),E的坐標是:(;4),此時正方形與拋物線有3個交點.
當點B在E點時,正方形與拋物線有兩個交點,此時-1-<m<-;
當點B在E和P點之間時,正方形與拋物線有三個交點,此時:-<x<-2;
當B在P點時;有兩個交點;
假設(shè)當B點在N點時;D點同時在拋物線上時;
同理,C的坐標是(m+4,-m-4),則D點的坐標是:(m,-m-4);
把D的坐標代入拋物線的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);
當B在F與N之間時,拋物線與正方形有兩個交點.此時0<m<3+.
故m的范圍是:-1-<m-或m=2或0<m<3+.27、略
【分析】【分析】(1)由拋物線y=ax2+bx+c過點A(-3;0),B(1,0),得出c與a的關(guān)系,即可得出C點坐標;
(2)利用已知得出△AOC∽△COB;進而求出OC的長度,即可得出a的取值范圍;
(3)作DG⊥y軸于點G,延長DC交x軸于點H,得出拋物線的對稱軸為x=-1,進而求出△DCG∽△HCO,得出OH=3,過B作BM⊥DH,垂足為M,即BM=h,根據(jù)h=HBsin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤;即可求出答案;
(4)連接CE,過點N作NP∥CD交y軸于P,連接EF,根據(jù)三角形的面積公式求出S△CAEF=S四邊形EFCB,根據(jù)NP∥CE,求出,設(shè)過N、P兩點的一次函數(shù)是y=kx+b,代入N、P的左邊得到方程組,求出直線NP的解析式,同理求出A、C兩點的直線的解析式,組成方程組求出即可.【解析】【解答】解:(1)∵拋物線y=ax2+bx+c過點A(-3;0),B(1,0);
∴消去b;得c=-3a.
∴點C的坐標為(0;-3a);
答:點C的坐標為(0;-3a).
(2)當∠ACB=90°時;
∠AOC=∠BOC=90°;∠OBC+∠BCO=90°,∠ACO+∠BCO=90°;
∴∠ACO=∠OBC;
∴△AOC∽△COB,;
即OC2=AO?OB;
∵AO=3;OB=1;
∴OC=;
∵∠ACB不小于90°;
∴OC≤,即-c≤;
由(1)得3a≤;
∴a≤;
又∵a>0;
∴a的取值范圍為0<a≤;
答:系數(shù)a的取值范圍是0<a≤.
(3)作DG⊥y軸于點G;延長DC交x軸于點H,如圖.
∵拋物線y=ax2+bx+c交x軸于A(-3;0),B(1,0).
∴拋物線的對稱軸為x=-1.
即-=-1,所以b=2a.
又由(1)有c=-3a.
∴拋物線方程為y=ax2+2ax-3a,D點坐標為(-1,-4a).
于是CO=3a;GC=a,DG=1.
∵DG∥OH;
∴△DCG∽△HCO;
∴,即;得OH=3,表明直線DC過定點H(3,0).
過B作BM⊥DH;垂足為M,即BM=h;
∴h=HBsin∠OHC=2sin∠OHC.
∵0<CO≤;
∴0°<∠OHC≤30°,0<sin∠OHC≤.
∴0<h≤1;即h的最大值為1;
答:△BCD中CD邊上的高h的最大值是1.
(4)由(1)、(2)可知,當∠ACB=90°時,,;
設(shè)AB的中點為N,連接CN,則N(-1,0),CN將△ABC的面積平分,
連接
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年馬工學素質(zhì)培養(yǎng)試題及答案
- 2024監(jiān)理工程師考試全科指南試題及答案
- 提升陪診師考試分數(shù)的試題及答案技巧
- 黑龍江省克東一中、克山一中等五校聯(lián)考2025年第二學期高三年級期末統(tǒng)一考試物理試題含解析
- 黑龍江省哈爾濱市122中學2024-2025學年高三招生統(tǒng)考(二)生物試題模擬試卷含解析
- 黑龍江省哈爾濱市示范名校2024-2025學年高三下期4月月考復習生物試題試卷含解析
- 黑龍江省哈市名校2024-2025學年高三年級第二次診斷性測驗歷史試題試卷含解析
- 黑龍江省望奎縣重點名校2024-2025學年普通高中初三調(diào)研測試物理試題含解析
- 黑龍江省青岡縣一中2025屆高考全真模擬卷生物試題第六套含解析
- 黑龍江省鶴崗市綏濱一中學2025年初三3月總復習質(zhì)檢(一模)物理試題含解析
- 《深度學習原理》課程教學大綱
- 滬教版數(shù)學八年級上冊全冊教案
- 特殊場所的消防安全知識培訓
- 航海英語聽力與會話
- 國家電網(wǎng)招聘2025-企業(yè)文化復習試題含答案
- 2024年官方獸醫(yī)牧運通考試題庫(含答案)
- 《hpv與宮頸癌》課件
- 【課件】校園安全系列之警惕“死亡游戲”主題班會課件
- 西安交通大學《程序設(shè)計思想方法與實踐》2021-2022學年期末試卷
- 快樂讀書吧:童年(專項訓練)-2023-2024學年六年級語文上冊(統(tǒng)編版)(含答案)
- 企業(yè)信息化建設(shè)管理制度
評論
0/150
提交評論