2024年高中數(shù)學(xué)教案15篇_第1頁
2024年高中數(shù)學(xué)教案15篇_第2頁
2024年高中數(shù)學(xué)教案15篇_第3頁
2024年高中數(shù)學(xué)教案15篇_第4頁
2024年高中數(shù)學(xué)教案15篇_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年高中數(shù)學(xué)教案篇(薦)

高中數(shù)學(xué)教案15篇(薦)

作為一位兢兢業(yè)業(yè)的人民教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教學(xué)活動(dòng)的總的組

織綱領(lǐng)和行動(dòng)方案。寫教案需要注意哪些格式呢?下面是我?guī)痛蠹艺淼母咧袛?shù)學(xué)教案,僅供參

考,希望能夠幫助到大家。

高中數(shù)學(xué)教案1

教學(xué)目的:掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

教學(xué)難點(diǎn):標(biāo)準(zhǔn)方程的靈活運(yùn)用

教學(xué)過程:

一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

二、掌握知識(shí),鞏固練習(xí)

練習(xí):1.說出下列圓的方程

⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

2.指出下列圓的圓心和半徑

(1)(x-2)2+(y+3)2=3

(2)x2+y2=2

(3)x2+y2-6x+4y+12=0

3.判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

4.圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=l相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方

法)

練習(xí):1、某圓過(-2,1).(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2

的長度。

例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)I練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

高中數(shù)學(xué)教案2

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解"屬于"關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

教學(xué)重點(diǎn):集合的基本概念及表示方法

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法一列舉法與描述法,正確表示一些簡單的集合

授課類型:新授課

課時(shí)安排:1課時(shí)

教具:多媒體、實(shí)物笈影儀

內(nèi)容分析:

集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初

中,更進(jìn)一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中

用到的有點(diǎn)集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的

邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具這些可以幫助

學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)

學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使

用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合

實(shí)例對(duì)集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出

了畫圖表示集合的例子。

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)

識(shí)學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概

念在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)教科書給出的“一般

地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集"這句話,只是對(duì)集合概念的描述性

說明。

教學(xué)過程:

一、復(fù)習(xí)引入:

1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2、教材中的章頭引言;

3、集合論的創(chuàng)始人一康托爾(德國數(shù)學(xué)家)(見附錄);

4.“物以類聚","人以群分";

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號(hào)?是如何表示的?

(3)集合中元素的特性是什么?

(-)集合的有關(guān)概念:

由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對(duì)象

的‘全體形成一個(gè)集合,或者說,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集。集合中

的每個(gè)對(duì)象叫做這個(gè)集合的元素。

定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

1、集合的概念

(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡稱集)

(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

2、常用數(shù)集及記法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+

(3)整數(shù)集:全體整數(shù)的集合記作Z,

(4)有理數(shù)集:全體有理數(shù)的集合記作Q,

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R

注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

(2)非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+Q、Z、R等其它數(shù)集內(nèi)排除。的集,也是

這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

3、元素對(duì)于集合的隸屬關(guān)系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a£A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明誦的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱

兩可

(2)互異性:集合中的元素沒有重復(fù)

(3)無序性:集合中的元素沒有一定的順序(通常用正常的I順序?qū)懗?

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用〃瀉的拉丁字母

表示,如a、b、c、p、q……

⑵"w”的開口方向,不能把a(bǔ)eA顛倒過來寫

三、練習(xí)題:

1、教材P5練習(xí)1、2

2、下列各組對(duì)象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù)(不確定)

(2)好心的人(不確定)

(3)1,2,2,3,45(有重復(fù))

3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是一一2,0,2_

4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)

(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

5、設(shè)集合G中的元素是所有形如a+b(aGZ,b£Z)的數(shù),求證:

(1)當(dāng)XWN時(shí),XGG;

(2)若x£G,yWG,則x+yWG,而不一定屬于集合G

證明(1):在a+b(aeZ,b£Z)中,令a=xwN,b=0,則x=x+0*=a+b£G,

即xeG

證明(2):-/XGG,ywG,

/.x=a+b(aWZ,bwZ),y=c+d(cGZ,dEZ)

.?.x+y=(a+b)+(c+d)=(a+c)+(b+d)

'.'a^Z,bwZ,c£Z,dwZ

(3+c)wZ,(b+d)wZ

/.x+y=(a+c)+(b+d)eG,

又.?二且不一定都是整數(shù),

???=不一定屬于集合G

四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

2、集合元素的性質(zhì):確定性,互異性,無序性

3、常用數(shù)集的定義及記法

高中數(shù)學(xué)教案3

教學(xué)目標(biāo)

理解數(shù)列的概念,掌握數(shù)列的運(yùn)用

教學(xué)重難點(diǎn)

理解數(shù)列的概念,掌握數(shù)列的運(yùn)用

教學(xué)過程

1、數(shù)列:按照一定次序排列的一列數(shù)(與M酹有關(guān))

2、通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用f公式來表示an=f(n)0

(通項(xiàng)公式不)

3、數(shù)列的表示:

(1)列舉法:如L35Z9……;

(2)圖解法:由(n,an)點(diǎn)構(gòu)成;

⑶解析法:用通項(xiàng)公式表示如an=2n+l

(4)遞推法:用前n項(xiàng)的值與它相鄰的項(xiàng)之間的關(guān)系表示各項(xiàng),如al=l,an=l+2an-l

4、數(shù)列分類:有窮數(shù)列,無窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動(dòng)數(shù)列,常數(shù)數(shù)列;有界數(shù)列,

xx數(shù)列

5、任意數(shù)列{an}的前n項(xiàng)和的性質(zhì)

高中數(shù)學(xué)教案4

教材分析:

前面已學(xué)習(xí)了向量的概念及向量的線性運(yùn)算,這里引入一種新的向量運(yùn)算一向量的數(shù)量

積。教科書以物體受力做功為背景引入向量數(shù)量積的概念,既使向量數(shù)量積運(yùn)算與學(xué)生已有知識(shí)

建立了聯(lián)系又使學(xué)生看到向量數(shù)量積與向量模的大小及夾角有關(guān)同時(shí)與前面的向量運(yùn)算不同,

其計(jì)算結(jié)果不是向量而是數(shù)量。

在定義了數(shù)量積的概念后,進(jìn)一步探究了兩個(gè)向量夾角對(duì)數(shù)量積符號(hào)的影響;然后由投影的

概念得出了數(shù)量積的幾何意義;并由數(shù)量積的定義推導(dǎo)出一些數(shù)量積的重要性質(zhì);最后"探究"研

究了運(yùn)算律.

教學(xué)目標(biāo):

(一)知識(shí)與技能

1.掌握數(shù)量積的定義、重要性質(zhì)及運(yùn)算律;

2.能應(yīng)用數(shù)量積的重要性質(zhì)及運(yùn)算律解決問題;

3.了解用平面向量數(shù)量積可以解決長度、角度、垂直共線等問題,為下節(jié)課靈活運(yùn)用平面向

量數(shù)量積解決問題打好基砧。

(二)過程與方法

以物體受力做功為背景引入向量數(shù)量積的概念從數(shù)與形兩方面引導(dǎo)學(xué)生對(duì)向量數(shù)量積定義

進(jìn)行探究,通過例題分析,使學(xué)生明確向量的數(shù)量積與數(shù)的乘法的聯(lián)系與區(qū)別。

(三)情感、態(tài)度與價(jià)值觀

創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從物理學(xué)中"功"這個(gè)概念引入課題,開始就激發(fā)學(xué)生的學(xué)習(xí)興趣,

讓學(xué)生容易切入課題,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),加強(qiáng)數(shù)學(xué)與其它學(xué)科及生活實(shí)踐的聯(lián)系。

教學(xué)重點(diǎn):

1.平面向量的數(shù)量積的定義;

2.用平面向量的數(shù)量積表示向量的模及向量的夾角。

教學(xué)難點(diǎn):

平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用。

教學(xué)方法:

啟發(fā)引導(dǎo)式

教學(xué)過程:

(一)提出問題,引入新課

前面我們學(xué)習(xí)了平面向量的線性運(yùn)算,包括向量的‘加法、減法、以及數(shù)乘運(yùn)算,它們的運(yùn)

算結(jié)果都是向量,既然兩個(gè)向量可以進(jìn)行加法、減法運(yùn)算,我們自然會(huì)提出:兩個(gè)向量是否能進(jìn)

行"乘法"運(yùn)算呢?如果能,運(yùn)算結(jié)果又是什么呢?

這讓我們聯(lián)想到物理中"功”的概念,即如果一個(gè)物體在力F的作用下產(chǎn)生位移s,F與s

的夾角是0,那么力F所做的功如何計(jì)算呢?

我們知道:W=mcose,功是一個(gè)標(biāo)量(數(shù)量),而力它等于力F和位移s都是矢量(向量),

功等于力和位移這兩個(gè)向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看

成是兩向量F和s的一種運(yùn)算的結(jié)果呢,為此我們引入平面向量的數(shù)量積。

(二)講授新課

今天我們就來學(xué)習(xí):(板書課題)

高中數(shù)學(xué)教案5

1.幽默風(fēng)趣的你,平時(shí)在班里話語不多,也不張揚(yáng),但是,你在無意中的表現(xiàn)仍然贏得了

很好的人際關(guān)系,學(xué)習(xí)上你認(rèn)真刻苦,也能及時(shí)的完成作業(yè),但是我覺得你總是沒把全部的心思

用在學(xué)習(xí)上,不然以你的聰明,應(yīng)該保持在前三名才對(duì)啊,加油吧,也許關(guān)注學(xué)習(xí)成績對(duì)你才是

更有意義的事!

2.身為紀(jì)律委員的你,認(rèn)真負(fù)責(zé),以身作則,生活上的你平易近人,與同學(xué)關(guān)系融洽,學(xué)

習(xí)上你勤奮刻苦,尤其在英語的學(xué)習(xí)上,顯示出了你的語言天賦,我覺得,假如你能把這份自信

和興趣用到其他的學(xué)科學(xué)習(xí)中,也一定會(huì)收獲很多的!加油吧!

3.你能嚴(yán)格遵守校規(guī),上課認(rèn)真聽講,作業(yè)完成認(rèn)真,樂于助人,愿意幫助同學(xué),大掃除

時(shí)你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點(diǎn),定會(huì)取得更好的結(jié)果,

而且你還是一個(gè)愿意動(dòng)腦筋的好學(xué)生,如果繼續(xù)保持下去定會(huì)取得驕人的成績!

4.你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級(jí)紀(jì)律,熱愛集體,對(duì)待學(xué)習(xí)態(tài)度端正,

上課能夠?qū)P穆?井,課下能夠認(rèn)真完成作業(yè).你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁督

就好了,掌握知識(shí)也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高,平時(shí)善于多動(dòng)筆認(rèn)真作好筆記,

多開動(dòng)腦筋,相信你一定能在下學(xué)期更得更大的進(jìn)步!你學(xué)習(xí)認(rèn)真刻苦,也能善于思考,更十分

活潑,并能嚴(yán)格遵守班級(jí)和宿舍紀(jì)律,上課你能認(rèn)真聽講,做作業(yè)時(shí)你十分專注,常常愿意花功

夫鉆研難題,與同學(xué)相處也十分融洽,但若能在認(rèn)真做作業(yè)的同時(shí),將速度提上去,我相信你會(huì)

做得更好。要多講究學(xué)習(xí)方法,不能靠熬夜來完成學(xué)習(xí)任務(wù),提高學(xué)習(xí)效率,老師相信你一定能

通過自己的努力取得更好的成績!

5.雖然你個(gè)頭小,但每次你領(lǐng)讀時(shí)的那股認(rèn)真勁兒,令老師暗暗稱贊。你尊敬老師,和同

學(xué)能和睦相處。甜美可愛的你,經(jīng)過不斷的努力,你會(huì)更已色的!

6.你是個(gè)活潑可愛的孩子,課堂上,你非常投入地學(xué)習(xí)著,朗讀課文時(shí)數(shù)你最有感情。中

午你還主動(dòng)給老師捶背,真是個(gè)會(huì)關(guān)心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上

可不能偷看啊!愿書成為你E勺好朋友。

7.學(xué)習(xí)中你能嚴(yán)格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學(xué)習(xí)方法,

抓緊一切時(shí)間,笑在最后的一定是你!

8.許麗君一你思想上進(jìn),踏實(shí)穩(wěn)重,誠實(shí)謙虛,尊敬老師。黑板報(bào)中有你傾注的心血,

集體榮譽(yù)簿里有你的功勞。但學(xué)習(xí)的主動(dòng)精神不夠,競爭意識(shí)不強(qiáng),也很少看到你向老師請(qǐng)教,

成績進(jìn)步不明顯。請(qǐng)相信:世上沒有比腳更長的路,也沒有匕匕心更高的山!望今后大膽進(jìn)取,多

思多問,發(fā)揮你的聰明才智,進(jìn)一步激發(fā)活力,提高學(xué)習(xí)效率,持之以恒,美好的明天屬于你!

9.每天你都背著書包高高興興地來上學(xué),學(xué)到了不少的知識(shí),可惜只能記住很少的一部分。

希望你改進(jìn)學(xué)習(xí)方法,提高學(xué)習(xí)效率,在下學(xué)期有更大的進(jìn)步!

10.你言語不多,但待人誠懇、禮貌,作風(fēng)踏實(shí),品學(xué)兼優(yōu),熱愛班級(jí),關(guān)愛同學(xué),勤奮好

學(xué),思維敏捷,成績優(yōu)秀。愿你扎實(shí)各科基礎(chǔ),堅(jiān)持不懈,!一定能考上重點(diǎn)!優(yōu)秀的男生肯定

是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中.你的人

生就是輝煌如意的!

高中數(shù)學(xué)教案6

一、單元教學(xué)內(nèi)容

(1)算法的基本概念

(2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

(3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

二、單元教學(xué)內(nèi)容分析

算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,

算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來越大的作用,并E益融入社會(huì)生活的許多方面,算法思

想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊(yùn)涵了豐富的算

法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例

的分析,體驗(yàn)程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解

決問題的過程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能

力,提高邏輯思維能力

三、單元教學(xué)課時(shí)安排:

1、算法的基本概念3課時(shí)

2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)

3、算法的基本語句2課時(shí)

四、單元教學(xué)目標(biāo)分析

1、通過對(duì)解決具體問題過程與步驟的分析體會(huì)算法的'思想,了解算法的含義

2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)程序框圖表達(dá)解決問題的過程。在具體問題的解

決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、豺牛、循環(huán)結(jié)構(gòu).

3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸

出、斌值、條件、循環(huán)語句,進(jìn)一步體會(huì)算法的基本思想。

4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會(huì)中國古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

五、單元教學(xué)重點(diǎn)與炬點(diǎn)分析

1、重點(diǎn)

Q)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會(huì)用算法語句解決簡單的實(shí)際問題

2、難點(diǎn)

(1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計(jì)

六、單元總體教學(xué)方法

本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是

學(xué)生的邏輯能力不是很強(qiáng),只能通過對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

七、單元展開方式與特點(diǎn)

1、展開方式

自然語言一程序框圖一算法語句

2、特點(diǎn)

(1)螺旋上升分層遞進(jìn)⑵整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

八、單元教學(xué)過程分析

1.算法基本概念教學(xué)過程分析

對(duì)生活中的實(shí)際問題通過對(duì)解決具體問題過程與步驟E勺分析(喝茶,如二元一次方程組求解

問題),體會(huì)算法的思想,了解算法的含義,能用自然語言描述算法。

2.算法的流程圖教學(xué)過程分析

對(duì)生活中的實(shí)際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)流程圖表達(dá)解決問題的過程,了

解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、

翱牛分支、循環(huán),會(huì)用流程圖表示算法。

3.基本算法語句教學(xué)過程分析

經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦

值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進(jìn)一步體會(huì)算法的基本思想。能用自然語

言、流程圖和基本算法語句表達(dá)算法,

4.通過閱讀中國古代數(shù)學(xué)中的算法案例,體會(huì)中國古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

九、單元評(píng)價(jià)設(shè)想

1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評(píng)價(jià)

關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對(duì)用集合語言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問題充滿興

趣;在學(xué)習(xí)過程中,能否體會(huì)集合語言準(zhǔn)確、簡潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)

語言進(jìn)行交流的能力。

2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能

關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本

結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將

進(jìn)一步學(xué)習(xí)算法

高中數(shù)學(xué)教案7

一、教材分析

1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形。"二

面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、

直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)

概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ).因此,它起著承上啟下的作用.通過本節(jié)課的學(xué)習(xí)還

對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學(xué)目標(biāo):

知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

能力目標(biāo):Q)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

德育目標(biāo):Q)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)

(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生

之間、師生之間的情感距離。

3、重點(diǎn)、難點(diǎn):

重點(diǎn):"二面角"和‘二面角的平面角"的概念

難點(diǎn):"二面角的平面角"概念的形成過程

二、教法分析

1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題后導(dǎo)、

活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角

及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)

完成有一定的困難,所以將其放在下節(jié)課。

3、教學(xué)手段:教學(xué)手^的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)

課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二

面角的模型.

三、學(xué)法指導(dǎo)

1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的‘好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),

全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,

學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從

而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

四、教學(xué)過程

心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的

興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。

(一)、二面角

1、揭示概念產(chǎn)生背景,

問題情境L在平面幾何中"角"是怎樣定義的?

問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書

課題)。

通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)

會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概

念形成過程。

問題情境4、那么,應(yīng)該如何定義二面角呢?

創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中"角”這

一概念的引入過程.教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極

的評(píng)價(jià)。

問題情境5、同學(xué)們育絆出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地

(二)、二面角的平面角

1、揭示概念產(chǎn)生背景,平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以

看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大

小是唯一確定的。平面

與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一

步的探討,我們有必要來研究二面角的度量問題。

問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角

大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

2、展現(xiàn)概念形成過程

(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,

電腦演示以提高效率。

問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一

確定的。

問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該

給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放

在兩個(gè)面內(nèi).這也是學(xué)生直覺思維的結(jié)果.

(3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

(4)、繼續(xù)探索,得到定義。

問題情境1L那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確

定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上

一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),

并加以理論證明。

(三)、二面角及其平面角的畫法

主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

(四)、范例分析

為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生

分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而

增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面

角,求此時(shí)B、c兩點(diǎn)間的距離。

分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利

用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積

極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題

規(guī)范即必須證明/BDc是二面角B—AD—c的平面角。

變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)

練也可作為課后思考題。

題后反思:(1)解題過程中必須證明NBDC是二面角B—AD—c的平面角.

(2)求二面角的平面龜?shù)姆椒ㄊ牵合日遥ɑ蜃鳎笞C——再解(三角形)

(五)、練習(xí)、小結(jié)與作業(yè)

練習(xí):習(xí)題9.7的第3題

小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促

成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類

匕存口深入研究這兩種知識(shí)創(chuàng)新的方法。

作業(yè):習(xí)題9.7的第4題

思考題:見例題

五、板書設(shè)計(jì)(見課件)

以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

高中數(shù)學(xué)教案8

教學(xué)目標(biāo):

1。理解并掌握瞬時(shí)速度的定義;

2。會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;

3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力。

教學(xué)重點(diǎn):

會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。

教學(xué)難點(diǎn):

理解瞬時(shí)速度和瞬時(shí)加速度的定義。

教學(xué)過程:

一、問題情境

L問題情境.

平均速度:物體的運(yùn)動(dòng)位移與所用時(shí)間的比稱為平均速度。

問題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動(dòng)的'快慢程度。那么如何刻畫物體在某一時(shí)

刻運(yùn)動(dòng)的快慢程度?

問題二跳水運(yùn)動(dòng)員從10m高跳臺(tái)騰空到入水的過程中,不同時(shí)刻的速度是不同的。假設(shè)t

秒后運(yùn)動(dòng)員相對(duì)于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動(dòng)員的速度.

2。探究活動(dòng):

(1)計(jì)算運(yùn)動(dòng)員在2s到2.1s(tW)內(nèi)的平均速度。

(2)計(jì)算運(yùn)動(dòng)員在2s到(2+?t)s(t£)內(nèi)的平均速度。

(3)如何計(jì)算運(yùn)動(dòng)員在更短時(shí)間內(nèi)的平均速度。

探究結(jié)論:

時(shí)間區(qū)間

t

平均速度

0.1

-13.59

0.01

-13.149

0.001

-13.1049

0.0001

-13.10049

0.00001

-13.100049

0.000001

-13.1000049

當(dāng)?t?0時(shí),?-13.1,

該常數(shù)可作為運(yùn)動(dòng)員在2s時(shí)的瞬時(shí)速度。

即t=2s時(shí),高度對(duì)于時(shí)間的瞬時(shí)變化率。

二、建構(gòu)數(shù)學(xué)

1。平均速度。

設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為。

可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時(shí),極限就

是物體在時(shí)刻的瞬時(shí)速度。

三、數(shù)學(xué)運(yùn)用

例1物體作自由落體運(yùn)動(dòng),運(yùn)動(dòng)方程為,其中位移單位是m,時(shí)

間單位是s,,求:

(1)物體在時(shí)間區(qū)間s上的平均速度;

(2)物體在時(shí)間區(qū)間上的平均速度;

(3)物體在t=2s時(shí)的瞬時(shí)速度。

分析

將?代入上式,得:

(1)t=0.1=2.05g=20.5m/so

將?代世式,得:=

(2)t=0.012.005g=20.05m/so

(3)當(dāng)?t?O,2+?t?2,從而平均速度的極限為:

例2設(shè)一輛轎車在公路上作直線運(yùn)動(dòng),假設(shè)時(shí)的速度為,

求當(dāng)時(shí)轎車的瞬時(shí)加速度。

當(dāng)?t無限趨于0時(shí),無限趨于,即:。

練習(xí)

課本P12—1,2。

四、回顧小結(jié)

問題1本節(jié)課你學(xué)到了什么?

1理解瞬時(shí)速度和瞬時(shí)加速度的定義;

2實(shí)際應(yīng)用問題中瞬時(shí)速度和瞬時(shí)加速度的求解;

問題2解決瞬時(shí)速度和瞬時(shí)加速度問題需要注意什么?

注意當(dāng)?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。

問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

2極限的思想方法。

3特殊到一般、從具體到抽象的推理方法。

五、課外作業(yè)

高中數(shù)學(xué)教案9

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué)是科學(xué)和技術(shù)的基礎(chǔ)是人類文化的重要組成部分。

數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)

基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展

奠定基礎(chǔ).二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)舞出知

識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想

象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)

生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.撤出模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。

2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排

教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。

四、教學(xué)內(nèi)容與要求

(-)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的'聯(lián)系。掌握:

能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技

能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用

技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)

進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;

能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對(duì)工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)

方法予以解決。

數(shù)學(xué)思維能力:依據(jù)歷學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問題

能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問題(或需求),會(huì)選擇合適的模型(模

式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第3單元函數(shù)(12學(xué)時(shí))

第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))

第5單元三角函數(shù)(18學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第9單元立體幾何(14學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

高中數(shù)學(xué)教案10

教學(xué)目標(biāo):

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

(2)理解直線與二元一次方程的關(guān)系及其證明

(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一

的觀點(diǎn).

教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程(、不同時(shí)為0)的對(duì)應(yīng)關(guān)

系及其證明.

教學(xué)用具:計(jì)算機(jī)

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法

教學(xué)過程:

下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:

教學(xué)設(shè)計(jì)思路:

(-)引入的設(shè)計(jì)

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一人問題:

問:求出過點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高

次數(shù)為一次.

肯定學(xué)生回答后強(qiáng)調(diào)"也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一

次”.

啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)??各小組可以討論討論.

學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:

"任意直線的方程都是二元一次方程嗎?"

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決

問題的思路.

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…

思路二:…

教師組織雨介,確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.

當(dāng)存在時(shí),直線的截距也一定存在,直線的'方程可表示為,它是二元一次方程.

當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合

理性:

平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)

直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程

是合理的.

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方

程.

至此,我們的問題1就解決了.簡單點(diǎn)說就是:直線方程都是二元一次方程.而且這個(gè)方

程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是"要么形如這樣,要么形如這樣的方程”.

同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同

時(shí)為0)的二元一次方程.

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?

任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?

不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)萬面,這個(gè)問題是它的另一方面,這是

顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為

0)系數(shù)是否為0恰好對(duì)應(yīng)斜率是否存在,即

(1)當(dāng)時(shí),方程可化為

這是表示斜率為、在軸上的截距為的直線.

(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為

這表示一條與軸垂直的直線.

因此,得到結(jié)論:

在平面直角坐標(biāo)系中,任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線.

為方便,我們把(其中、不同時(shí)為0)稱作直線方程的一般式是合理的.

演示"直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

至此,我們的第二個(gè)問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問題其實(shí)是一個(gè)大問題的兩

個(gè)方面,這個(gè)大問題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直

線特殊形式的抽象和概括而且抽象的層次越高越簡潔,我們還體會(huì)到了特殊與T殳的轉(zhuǎn)化關(guān)系.

(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

高中數(shù)學(xué)教案11

一、教學(xué)目標(biāo)

(1)了解含有"或"、"且〃、"非"復(fù)合命題的概念及其構(gòu)成形式;

(2)理解邏輯聯(lián)結(jié)詞"或""且""非"的含義;

(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)二,培養(yǎng)學(xué)生簡單推理的技能。

二、教學(xué)重點(diǎn)難點(diǎn):

重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)"或"的含義的理解。

三、教學(xué)過程

1.新課導(dǎo)入

在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開邏輯。具有一定邏輯知識(shí)是構(gòu)成一個(gè)公

民的文化素質(zhì)的重要方面。數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更

強(qiáng)調(diào)邏輯性。如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的

錯(cuò)誤。其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開始接觸一些簡易邏輯的知識(shí)。

初一平面幾何中曾學(xué)過命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子。(板書:命題。)

(從初中接觸過的"命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

(同學(xué)議論結(jié)果,答案是肯定的)

教師提問:什么是命題?

(學(xué)生進(jìn)行回憶、思考。)

概念總結(jié):對(duì)一件事情作出了判斷的語句叫做命題。

(教師肯定了同學(xué)的回答,并作板書。)

由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題。

(教師利用投影片,和學(xué)生討論以下問題。)

例1判斷以下各語句是不是命題,若是,判斷其真假:

命題一定要對(duì)一件事情作出判斷,⑶、(4)沒有對(duì)一彳牛事情作出判斷,所以它們不是命題。

初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的

知識(shí)。

2.i腿新課

大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁至26頁例1前,并歸納一下這段

內(nèi)容主要講了哪些問題?

(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問題。師生一道歸納如下。)

Q)什么叫做命題?

可以判斷真假的語句叫做命題。

判斷一個(gè)語句是不是命題,關(guān)鍵看這語句有沒有對(duì)T牛事情作出了判斷,疑問句、祈使句都

不是命題。有些語句中含有變量,如中含有變量,在不給定變量的值之前,我們無法確定這語

句的‘真假(這種含有變量的語句叫做“開語句").

⑵介紹邏輯聯(lián)結(jié)詞"或"、"且"、"非"。

"或"、"且"、"非"這些詞叫做邏輯朕結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有"若…

則…”和"當(dāng)且僅當(dāng)"兩種形式。

對(duì)"或"的理解,可聯(lián)想到集合中"并集"的概念。中的"或",它是指""、""中

至少一個(gè)是成立的,即且;也可以且;也可以且.這與生活中"或"的含義不同,例如"你去

或我去",理解上是排斥你我都去這種可能。

對(duì)"且"的理解,可聯(lián)想到集合中"交集"的概念。中的"且",是指""、"這兩個(gè)

條件都要滿足的意思。

對(duì)"非"的理解,可聯(lián)想到集合中的“補(bǔ)集"概念,若命題對(duì)應(yīng)于集合,則命題非就對(duì)

應(yīng)著集合在全集中的補(bǔ)集.

命題可分為簡單命題和復(fù)合命題。

不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題。簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上

不能再分解成其他命題)的命題。

由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如"6是自然數(shù)且是偶數(shù)"就是由簡單

命題"6是自然數(shù)"和"6是偶數(shù)"由邏輯聯(lián)結(jié)詞"且"構(gòu)成的復(fù)合命題。

(4)命題的表示:用,,,,......來表示。

(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開。)

我們接觸的復(fù)合命題一般有"或"、"且"、"非"、"若則"等形式。

給出一個(gè)含有"或"、"且"、"非"的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所

用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡單命題,寫出含有邏輯聯(lián)結(jié)詞"或"、"且"、"非"

的復(fù)合命題。

對(duì)于給出"若則"形式的復(fù)合命題,應(yīng)能找到條件和結(jié)論.

在判斷一個(gè)命題是簡單命題還是復(fù)合命題時(shí),不能只從字面上來看有沒有"或"、"且"、

"非""例如命題"等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合",此命題

字面上無"且";命題"5的倍數(shù)的末位數(shù)字不是0就是5"的字面上無"或",但它們都是復(fù)合

命題。

3.鞏固新課

例2判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題。如果是復(fù)合命題,指出它的構(gòu)成

形式以及構(gòu)成它的簡單命題。

(1);

(2)0.5非整數(shù);

(3)內(nèi)錯(cuò)角相等,兩直線旃??;

(4)菱形的對(duì)角線互相垂直且平分;

(5)平行線不相交;

⑹若,則.

(讓學(xué)生有充分的時(shí)間進(jìn)行辨析。教材中對(duì)"若…則…”不作要求,教U幣可以根據(jù)學(xué)生的情況

作些補(bǔ)充。)

例3寫出下表中各給定語的否定語(用課件打出來).

若給定語為

等于

大于

都是

至多有一個(gè)

至少有一個(gè)

至多有個(gè)

其否定語分別為

分析:"等于"的否定語是"不等于";

"大于"的否定語是‘小于或者等于";

"是"的否定語是"不是";

"都是"的否定語是‘不都是";

"至多有一個(gè)”的否定語是“至少有兩個(gè)";

"至少有一個(gè)"的否定語是"一個(gè)都沒有";

"至多有個(gè)"的否定語是“至少有個(gè)"。

(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論。)

置疑:"或"、"且"的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開。)

4.課堂練習(xí):第26頁練習(xí)1

5.課外作業(yè):第29頁習(xí)題1.6

高中數(shù)學(xué)教案12

一教材分析:

集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重

要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來

越廣泛的領(lǐng)域種得到應(yīng)用。

二目標(biāo)分析:

教學(xué)重點(diǎn).難點(diǎn)

重點(diǎn):集合的含義與表示方法.

難點(diǎn):表示法的恰當(dāng)選擇.

教學(xué)目標(biāo)

I.知識(shí)與技能

(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

(2)知道常用數(shù)集及其專用記號(hào);(3)了解集合中元素的確定性.互異性.無序性;

(4)會(huì)用集合語言表示有關(guān)數(shù)學(xué)對(duì)象;

2.過程與方法

Q)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).

3.情感.態(tài)度與價(jià)值觀

使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

三.教法分析

1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考?交流.討論和概括,從而更好地完成本節(jié)課

的教學(xué)目標(biāo)2教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).

四.過程分析

(一)創(chuàng)設(shè)情景,揭示課題

1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級(jí)。

(2)問題:像"家庭"、"學(xué)校"、"班級(jí)"等,有什么共同特征?

引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià).

2.活動(dòng):Q)列舉生活中的集合的例子;(2)分析、概括各實(shí)例的共同特征

由此引出這節(jié)要學(xué)的內(nèi)容。

設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

(二)研探新知,建構(gòu)概念

1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

(1)1-20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;

(3)所有的安理會(huì)常任理事國;(4)所有的,正方形;

⑸海南省在20xx年9月之前建成的所有立交橋;

(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

⑺國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.

2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

3每個(gè)小組選出一位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例

的特征,并給出集合的含義.一般地,指定的某些對(duì)象的全體稱為集合(簡稱為集).集合中的每個(gè)

對(duì)象叫作這個(gè)集合的元素.

4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母abc,d?表示.

設(shè)計(jì)意圖:通過實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

(三)質(zhì)疑答辯,發(fā)展思維

1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),

解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個(gè)集合的

元素是一樣的,我們就稱這兩個(gè)集合相等.

2.教師組織引導(dǎo)學(xué)生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

Q)大于3小于11的偶數(shù)(2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.

3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對(duì)

學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià).

4.教師提出問題,讓學(xué)生思考

b是(1)如果用A表示高一(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),

高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的

關(guān)系有兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論