2022年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)一模試題(解析版)_第1頁
2022年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)一模試題(解析版)_第2頁
2022年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)一模試題(解析版)_第3頁
2022年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)一模試題(解析版)_第4頁
2022年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)一模試題(解析版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)一模試題

一.選擇題:(每小題只有一個(gè)選項(xiàng),每小題3分,共計(jì)30分)

1.下列四個(gè)幾何體中,左視圖為圓的是()

【答案】A

【解析】

【分析】根據(jù)三視圖的法則可得出答案.

【詳解】解:左視圖為從左往右看得到的視圖,

A.球的左視圖是圓,

B.圓柱的左視圖是長方形,

C.圓錐的左視圖是等腰三角形,

D.圓臺的左視圖是等腰梯形,

故符合題意的選項(xiàng)是A.

【點(diǎn)睛】錯(cuò)因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.

2.一元二次方程V—4=0的解是()

A.-2B.2C.±72D.±2

【答案】D

【解析】

【分析】這個(gè)式子先移項(xiàng),變成X2=4,從而把問題轉(zhuǎn)化為求4的平方根.

【詳解】移項(xiàng)得,x2=4

開方得,x=±2,

故選D.

【點(diǎn)睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a>0);ax2=b(a,b同號且

a#0);(x+a)2=b(b>0);a(x+b)2=c(a,c同號且a/)).法則:要把方程化為“左平方,右常數(shù),先

把系數(shù)化為1,再開平方取正負(fù),分開求得方程解”.

(2)用直接開方法求一元二次方程的解,要仔細(xì)觀察方程的特點(diǎn).

3.?△ABC中/C=90°,sinA=-,則tanA的值是()

2,一

A.-B.—C.BD.正

2232

【答案】C

【解析】

【分析】由s%A=工,得出/A=30。,再等角30。的正切值得出結(jié)果.

2

【詳解】解::/C=90。,s%A=工,

2

ZA=30°,

:.tan30°=—.

3

故選:C.

[點(diǎn)睛】本題考查特殊角的三角函數(shù)值,牢記特殊角的三角函數(shù)值是解決問題的關(guān)鍵.

4.如圖,邊長為2的正方形ABCD的對角線相交于點(diǎn)O,過點(diǎn)。的直線分別交邊AD、BC于E、尸兩點(diǎn),

則陰影部分的面積是()

A.1B.2C.3D.4

【答案】A

【解析】

【詳解】???四邊形ABC。是正方形,

ZEDB=ZOBF,DO=BO,

在AEDO和△F80中,

ZEDO=ZFBO

DO=BO

ZFOB=ZEOD,

△OEO@/\BFO(ASA),

,SA?EO=SABFO,

陰影面積=S^BOC=;x2x2=1,

故選:A.

5.某校前年用于綠化的投資為20萬元,今年用于綠化的投資為36萬元,設(shè)這兩年用于綠化投資的年平均

增長率為X,則列方程得()

A.20(1+2%)=36B.20(1+x2)=36

C.20(1+x)2=36D.20(1+x)+20(1+x)2=36

【答案】C

【解析】

【分析】是增長率問題,一般用增長后的量=增長前的量x(1+增長率),設(shè)這兩年綠化投資的年平均增長

率為x,根據(jù)“前年用于綠化的投資為20萬元,今年用于綠化的投資為36萬元”,可得出方程.

【詳解】解:設(shè)這兩年綠化投資的年平均增長率為尤,

依題意得20(1+x)2=36.

故選:C.

【點(diǎn)睛】本題考查了由實(shí)際問題抽象出一元二次方程,平均增長率問題,若設(shè)變化前的量為。,變化后的

量為6,平均變化率為羽則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(l±x)2=b.

6.某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,則符合

這一結(jié)果的實(shí)驗(yàn)最有可能的是()

實(shí)驗(yàn)次數(shù)10020030050080010002000

頻率0.3650.3280.3300.3340.33603320.333

A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

B.拋一個(gè)質(zhì)地均勻正六面體骰子,向上的面點(diǎn)數(shù)是5

C.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”

D.拋一枚硬幣,出現(xiàn)反面的概率

【答案】C

【解析】

【分析】根據(jù)利用頻率估計(jì)概率得到實(shí)驗(yàn)的概率在0.33左右,再分別計(jì)算出四個(gè)選項(xiàng)中的概率,然后進(jìn)行

判斷.

【詳解】解:A、一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率為工,不符

4

合題意;

B、拋一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是5的概率為工,不符合題意;

C、在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”的概率是工,符合題意;

3

D、拋一枚硬幣,出現(xiàn)反面的概率為:,不符合題意,

故選C.

【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動,并

且擺動的幅度越來越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計(jì)概率,這個(gè)固定的近似

值就是這個(gè)事件的概率.

7.如圖,在平面直角坐標(biāo)系中,已知A(1,O),B(2,l),D(3,0),"BC與△DEF位似,原點(diǎn)O是位似

C.(6,4)D.(6,3)

【答案】D

【解析】

AU

【分析】根據(jù)位似圖形的概念得到求出一,根據(jù)位似變換的性質(zhì)計(jì)算,得到答案.

DE

【詳解】解:(1,0),D(3,0),

OA—1,00=3,

”BC與位似,

J.AB//DE,

.AB_OA

,*DE-OD―3'

.?.△ABC與△。所的位似比為1:3,

???點(diǎn)B的坐標(biāo)為(2,1),

點(diǎn)的坐標(biāo)為(2x3,1x3),

即E點(diǎn)的坐標(biāo)為(6,3),

故選:D.

【點(diǎn)睛】本題考查的是位似圖形的概念、相似三角形的性質(zhì),根據(jù)相似三角形的性質(zhì)求出AABC與△DEP

的位似比是解題的關(guān)鍵.

8.下列命題中,假命題的是().

A.順次連接對角線相等的四邊形的四邊中點(diǎn)所形成的圖形是菱形;

B.各邊對應(yīng)成比例的兩個(gè)多邊形相似;

C.反比例函數(shù)的圖像既是軸對軸圖形,也是中心對稱圖形;

D.已知二次函數(shù)y=X2—1,當(dāng)%<0時(shí),y隨x的增大而減小.

【答案】B

【解析】

【分析】真命題就是正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立.

【詳解】A選項(xiàng),順次連接對角線相等的四邊形的四邊中點(diǎn)所形成的圖形是菱形,是真命題,不符合題

,意.

B選項(xiàng),各邊對應(yīng)成比例的兩個(gè)多邊形相似;凸凹多邊形各邊成比例時(shí),不是相似多邊形,符合題意.

C選項(xiàng),反比例函數(shù)的圖像既是軸對軸圖形,也是中心對稱圖形;是真命題,不符合題意.

D選項(xiàng),已知二次函數(shù)y=%2—1,當(dāng)%<0時(shí),y隨x的增大而減??;是真命題,不符合題意.

故選B

【點(diǎn)睛】此題考察的知識點(diǎn):菱形的性質(zhì)、多邊形相似的概念、反比例函數(shù)圖像的性質(zhì)、二次函數(shù)圖像的

性質(zhì);掌握真假命題的概念是解答此題的關(guān)鍵.

9.如圖,A,B兩點(diǎn)的坐標(biāo)分別是(1,4),(3,4),拋物線的頂點(diǎn)在線段A3上運(yùn)動,與x軸交于C,。兩點(diǎn)

(C在。的左側(cè)),點(diǎn)C的最小值為-1,則。點(diǎn)的橫坐標(biāo)的最大值是()

A.1B.3C.5D.6

【答案】C

【解析】

【分析】根據(jù)A,8點(diǎn)的坐標(biāo)分析出當(dāng)對稱軸x=l時(shí),C有最小值為-1,可得。點(diǎn)的橫坐標(biāo)為3,

CD=4,當(dāng)對稱軸x=3時(shí),得。(1,0),根據(jù)CD=4,可得。(5,0).

【詳解】解:由題意可知:

當(dāng)對稱軸%=1時(shí),C有最小值為-1,

?.?對稱軸=乎乎,可得0(3,0),CD=4,

當(dāng)對稱軸%=3時(shí),得。(1,0),

':CD=4,可得£)(5,0),

:.D點(diǎn)的橫坐標(biāo)的最大值為5,

故選:C.

【點(diǎn)睛】本題考查二次函數(shù)頂點(diǎn)坐標(biāo)以及與x軸的交點(diǎn),關(guān)鍵是理解C有最小值時(shí),對稱軸%=1,求出

。坐標(biāo),以及O)長,當(dāng)對稱軸平移,C,。點(diǎn)也平移,此時(shí)。(1,0),利用CD的距離可求出。坐標(biāo).

10.如圖,在菱形ABC。中,對角線AC與3。相交于點(diǎn)。,在BC的延長線上取一點(diǎn)E,連接OE交CD

于點(diǎn)F.已知AB=5,CE=1,則CP的長是()

35

C.D.

57

【答案]D

【解析】

【分析】作OG-CD交BC于點(diǎn)G,根據(jù)平行線分線段成比例定理證明BG=CG,根據(jù)菱形的性質(zhì)可得

OB=OD,則G。是△BCD的中位線,可求出2G、CG和0G的長,再求出GE的長,由CP〃G??傻?/p>

△ECFs△EG。,根據(jù)相似三角形的對應(yīng)邊成比例即可求出CF的長.

【詳解】解:如圖,作。G〃CD交BC于點(diǎn)G,

B

:四邊形ABC。是菱形,且48=5,

:.BC=CD=AB=5,OB=OD,

BGBO,

-----=------=1,

CGDO

1“5

:.BG=CG=-BC=—,

22

.?.3。是4BCD的中位線

15?

:.GO=^CD=3,GOHCD

':CE=1,

57

GE=CG+CE=-+1=-

22

CF//GO,

ZECF=ZEGO

':/E=/E

:.△ECFSAEGO,

.CFCE

??一,

GOGE

77

2

;.CF的長為

7

故選:D.

【點(diǎn)睛】此題考查菱形的性質(zhì)、平行線分線段成比例定理、三角形的中位線定理、相似三角形的判定與性

質(zhì)等知識,正確地作出所需要的輔助線是解題的關(guān)鍵.

二.填空題:(每小題3分,共計(jì)15分)

11.四條線段。、6、c、d成比例,其中a=lcm、》=3cm、c=3cm,則線段d=__cm.

【答案】9

【解析】

【分析】如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據(jù)定義4=

cb,將a,6及c的值代入即可求得

【詳解】解:b,c,d是成比例線段,

ad=cb,

a=1cm,b=3cm,c=3cm,

則d=9cm.

故答案為:9.

【點(diǎn)睛】本題考查了比例線段,關(guān)鍵是理解比例線段的概念,列出比例式,用到的知識點(diǎn)是比例的基本性

質(zhì).

12.已知關(guān)于X的一元二次方程爐-2x+左=0有兩個(gè)相等的實(shí)數(shù)根,則上=-.

【答案】1

【解析】

【分析】因?yàn)榉匠逃袃蓚€(gè)相等的根,所以根的判別式A=〃-4ac=0,故可求出發(fā)的值.

【詳解】解:???方程有兩個(gè)相等的根,

A=b2—4ac=4—4左=0,

解得:k=l,

故答案為:L

【點(diǎn)睛】本題考查一元二次方程根的判別式,根據(jù)方程根的情況求參數(shù),屬于容易題.

13.小明的身高為1.6m,某一時(shí)刻他在陽光下的影子長為2m,與他鄰近的一棵樹的影長為10m,則這棵

樹的高為m.

【答案】8

【解析】

【分析】利用平行投影的特征以及相似三角形的性質(zhì)可求出答案.

【詳解】解:假設(shè)樹高為由題意可知:

---=—,解得:〃=8,即樹IWJ8m.

210

故答案為:8.

【點(diǎn)睛】本題考查平行投影及相似三角形的性質(zhì).關(guān)鍵是理解平行投影的特點(diǎn):兩個(gè)物體豎直放在地面

上,兩個(gè)物體及它們各自的影子及光線構(gòu)成的兩個(gè)直角三角形相似,利用相似的性質(zhì)求解.

14.如圖,A,B兩點(diǎn)分別在x軸正半軸,y軸正半軸上且NfiAO=30°,45=4次,將AAOB沿翻折

【答案】9石

【解析】

【分析】根據(jù)直角三角形的性質(zhì)得到AO=ABcos3(F=4Gx走=6,根據(jù)折疊的性質(zhì)得到

2

NO4B=30。,AD=AO=6,求得ND4O=60。,過。作OCUOA于C,根據(jù)直角三角形的性質(zhì)即可得到結(jié)

論.

【詳解】解:vZAOB=90°,ZBAO=30°,AB=,

.*.AO=ABcos30°=4^/3=6,

2

??,將△AO8沿AB翻折得△AO8,

AZDAB=ZOAB=30°,AD=AO=6,

:.NOAO=60。,

過。作0C_LOA于C,

ZACD=90°,

:.AC=^AD=3,CD=^-AD=3A/3-

:.D(3,36),

?.?反比例函數(shù)y=上(厚0)的圖象恰好經(jīng)過。點(diǎn),

?'?^=3X3A/3=9\/3,

故答案為:9\/3.

【點(diǎn)睛】本題考查反比例函數(shù)點(diǎn)的坐標(biāo)特征,翻折變換(折疊問題),直角三角形的性質(zhì),正確地作出輔

助線是解題的關(guān)鍵.

15.如圖,在正方形ABC。中,M是對角線8。上一點(diǎn),連接AM,將AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90。得AN,

連接KN交于E點(diǎn),連接ON.則下列結(jié)論中:①NDLBD;②ZMAE=NDNE;③

MN2=2EDAD;④當(dāng)A£)=MD時(shí),則=2-①.其中正確結(jié)論的序號是.

)△MED

【答案】①②④

【解析】

【分析】由“SAS'可證可得/ABM=/AZ)N=45。,可證DMLBO,故①正確;通過證明點(diǎn)

A,點(diǎn)M,點(diǎn)D,點(diǎn)N四點(diǎn)共圓,可得NMAE=NDNE,故②正確;通過證明AAENS^AM),可得

M22AD,AE,故③錯(cuò)誤;通過證明可得^^=2-拒,故④正確,即可求解.

、XMED

【詳解】解:,??四邊形ABCO是正方形,

:.AB=AD,ZBAD=90°,ZABD=ZADB=45°f

???將AM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90。得AN,

:.AM=AN,/MAN=900=/BAD,

:.ZBAM=ZDAN,

:.AABM^ADAN(SAS),

/ABM=/ADN=45。,

:.ZBDN=ZADB+ZADN=90°,

:.DN±BD,故①正確;

NMAN=NMDN=90°,

.?.點(diǎn)A,點(diǎn)M,點(diǎn)。,點(diǎn)N四點(diǎn)共圓,

ZMAE=ZDNE,故②正確;

':AM=AN,ZMAN=90°,

:.MNi=AM2+AN2=2AN2,ZANM=45°,

:ZDAN=ZNAE,ZANM=ZADN=45°,

:.叢AENS^AND,

.ANAE

AD~AN'

:.A1^=AD-AE,

:.M^=2AD-AE,故③錯(cuò)誤;

設(shè)AB=AD=a,則BD=0a,

\'AD=MD=a,

:.BM=(72-1)a=DN,

:.MI^=D1\P+MD2=2A1\P,

:.A^=(2-72)a2,

?.?點(diǎn)A,點(diǎn)M,點(diǎn)、D,點(diǎn)N四點(diǎn)共圓,

ZDAN=ZDMN,ZANM=ZADM,

:.AANESAMDE,

.?.2^=(黑產(chǎn)=2-0,故④正確,

,△MED

故答案為:①②④.

【點(diǎn)睛】本題是四邊形綜合題,考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形的性質(zhì),

相似三角形的判定和性質(zhì),圓的有關(guān)知識,靈活運(yùn)用這些性質(zhì)解決問題是解題的關(guān)鍵.

三.解答題:(本題共7小題,其中第16題6分,第17題6分,第18題7分,第19題8

分,第20題9分,第21題9分,第22題10分,共55分)

16.計(jì)算:2一+4cos45°-強(qiáng)+(萬—2022)°

3

【答案】-

2

【解析】

【分析】直接利用負(fù)指數(shù)幕、特殊角的三角函數(shù)值、二次根式的化簡和零指數(shù)募分別計(jì)算,然后根據(jù)實(shí)數(shù)

的混合運(yùn)算法則計(jì)算即可求解.

【詳解】解:原式=L+4x交—20+1

22

=-+2A/2-2A/2

2

_3

-2,

【點(diǎn)睛】本題主要考查負(fù)指數(shù)幕、特殊角的三角函數(shù)值、二次根式的化簡和零指數(shù)幕,熟記相關(guān)運(yùn)算法則

和特殊角的三角函數(shù)值是解題的關(guān)鍵.

17.為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開展了多種社團(tuán)活動.小

明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書法社團(tuán)、科技社團(tuán)(分別用字母A,B,C,D依次表示這四個(gè)

社團(tuán)),并把這四個(gè)字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗

勻后放在桌面上.

(1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是.

(2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機(jī)抽取一張卡

片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的

概率.

【答案】(1)(2)見解析,

42

【解析】

【分析】(1)直接根據(jù)概率公式求解;

(2)利用列表法展示所有12種等可能性結(jié)果,再找出小明兩次抽取的卡片中有一張是科技社團(tuán)D的結(jié)果

數(shù),然后根據(jù)概率公式求解.

【詳解】(1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率=,;

(2)列表如下:

ABcD

A(B,A)(C,A)(D,A)

B(A,B)(C,B)(D,B)

C(A,C)(B,C)(D,C)

D(A,D)(B,D)(C,D)

由表可知共有12種等可能結(jié)果,小明兩次抽取的卡片中有一張是科技社團(tuán)D的結(jié)果數(shù)為6種,

所以小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率為二=:.

122

【點(diǎn)睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選

出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率

18.如圖,上午9時(shí),一條船從A處出發(fā),以每小時(shí)40海里的速度向正東方向航行,9時(shí)30分到達(dá)B

處,從A,2兩處分別測得小島C在北偏東45。和北偏東15。.

(2)求8處船與小島C的距離(結(jié)果保留根號).

【答案】(1)30°(2)20A/2

【解析】

【分析】(1)根據(jù)三角形的內(nèi)角和定理即可得到結(jié)論;

(2)過點(diǎn)2作即與點(diǎn)。,根據(jù)已知可求得2D的長,再根據(jù)三角函數(shù)即可求得的長.

【小問1詳解】

解:由題意可知NABC=90°+15°=105°,

ZC=180°-105°-45°=30°.

【小問2詳解】

解:作BD_LAC于。點(diǎn),貝!]/ADB=NBOC=90。,

MAAB。中,AB=40義一=20,ZBAC=45°,

60

BD=A5.sin/BAD=20.sin45。=20x也=IOA/2,

2

在RfACBO中,ZC=30°,

?*-BC=2BD=20A/2.

即B處船與小島C的距離為200海里.

【點(diǎn)睛】本題考查解直角三角形的應(yīng)用-方向角問題,解題的關(guān)鍵是把一般三角形的問題可以轉(zhuǎn)化為解直

角三角形的問題,解決的方法就是作高線.

19.如圖,等腰AABC中,AB=AC,ADLBC交BC于。點(diǎn),E點(diǎn)是AB的中點(diǎn),分別過。,E兩點(diǎn)作

線段AC的垂線,垂足分別為G,F兩點(diǎn).

(1)求證:四邊形DEPG為矩形;

(2)若AB=10,EF=4,求CG的長.

【答案】(1)見解析(2)2

【解析】

【分析】(1)欲證明四邊形OEPG為矩形,只需推知該四邊形為平行四邊形,且有一內(nèi)角為直角即可;

(2)首先根據(jù)直角三角形斜邊上中線的性質(zhì)求得AE=DE=5;然后在直角AAEF中利用勾股定理得到AF

的長度;最后結(jié)合AB=AC=AF+FG+CG^10求解即可.

【小問1詳解】

證明:"AB^AC,AD±BC,

...點(diǎn)。是BC的中點(diǎn).

;E點(diǎn)是AB中點(diǎn),

是AABC的中位線.

:.DE//AC.

".'DGLAC,EF±AC,

:.EF//DG

...四邊形DEFG是平行四邊形.

又:NEFG=90°,

,四邊形OEFG為矩形;

【小問2詳解】

解:3c交BC于。點(diǎn),

ZADB=ZADC=9Q°

.?.△AD2是直角三角形

點(diǎn)是AB的中點(diǎn),AB=1Q,

.,.DE=AE=BC=5.

由(1)知,四邊形DEFG為矩形,

:.GF=DE=5

在直角AAEF中,EF=4,AE=5,

由勾股定理得:

AF=YIAE2-EF2=A/52-42=3-

\'AB=AC=IO,FG=ED=5,

:.GC=AC-FG-AF=10-5-3=2.

【點(diǎn)睛】本題主要考查了矩形的判定與性質(zhì),等腰三角形的性質(zhì)以及直角三角形斜邊上的中線,勾股定

理,根據(jù)題意找到長度相等的線段是解題的關(guān)鍵.

20.某水果超市以每千克20元的價(jià)格購進(jìn)一批櫻桃,規(guī)定每千克櫻桃售價(jià)不低于進(jìn)價(jià)又不高于40元,經(jīng)

市場調(diào)查發(fā)現(xiàn),櫻桃的日銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系y=-2x+16。,

(1)該超市要想獲得1000元的日銷售利潤,每千克櫻桃的售價(jià)應(yīng)定為多少元?

(2)當(dāng)每千克櫻桃的售價(jià)定為多少元時(shí),日銷售利潤最大?最大利潤是多少?

【答案】(1)30元;(2)當(dāng)每千克櫻桃的售價(jià)定為40元時(shí),日銷售利潤最大,最大利潤是1600元.

【解析】

【分析】(1)設(shè)每千克櫻桃的售價(jià)為X元,從而可得204x440,再根據(jù)“日銷售利潤為1000元”建立方

程,解方程即可得;

(2)設(shè)當(dāng)每千克櫻桃的售價(jià)為x元時(shí),日銷售利潤為川元,先求出川與尤之間的函數(shù)關(guān)系式,再利用二

次函數(shù)的性質(zhì)求解即可得.

【詳解】解:(1)設(shè)每千克櫻桃的售價(jià)為龍?jiān)?,則2OWXW4O,

由題意得:(%—20)(—2x+160)=1000,

解得石=30,%=70〉40(不符題意,舍去),

答:每千克櫻桃的售價(jià)應(yīng)定為30元;

(2)設(shè)當(dāng)每千克櫻桃的售價(jià)為x(20<x<40)元時(shí),日銷售利潤為攻元,

由題意得:w=(x-20)(-2x+160),

整理得:.=-2x2+200%-3200=-2(x-50)2+1800,

由二次函數(shù)性質(zhì)可知,在20WxW40內(nèi),w隨x的增大而增大,

則當(dāng)%=40時(shí),可取得最大值,最大值為—2x(40—50)2+1800=1600,

答:當(dāng)每千克櫻桃的售價(jià)定為40元時(shí),日銷售利潤最大,最大利潤是1600元.

【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用、二次函數(shù)的應(yīng)用,依據(jù)題意,正確建立方程和函數(shù)關(guān)系式是解

題關(guān)鍵.

21.如圖1,直線y=-2%+6的圖像與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)。是線段AB上一點(diǎn),過。點(diǎn)分

別作。4、的垂線,垂足分別是C、E,矩形。CDE的面積為4,且

(1)求。點(diǎn)坐標(biāo);

(2)將矩形OCDE以1個(gè)單位/秒的速度向右平移,平移后記為矩形MNPQ,記平移時(shí)間為f秒.

①如圖2,當(dāng)矩形MNPQ的面積被直線AB平分時(shí),求f的值;

12

②如圖3,當(dāng)矩形MNP。的邊與反比例函數(shù)丁=一的圖像有兩個(gè)交點(diǎn),記為7、K,若直線7X把矩形面

X

積分成1:7兩部分,請直接寫出/的值.

【答案】(1)£>(1,4);

(2)①/=▲;②t=3或23+^^.

22

【解析】

【分析】(1)假設(shè)。(。,―2。+6),利用矩形的面積以及CD>?!昕汕蟪觥|c(diǎn)坐標(biāo);

(2)①假設(shè)QW、PN和直線分別交于點(diǎn)T,S,找出M,N坐標(biāo),表示出MT,SN的長,利用梯形面

積等于矩形面積的一半可求出②對交點(diǎn)分情況,(i)交點(diǎn)在QP,PN上;(ii)交點(diǎn)在QM,PN上;

找出T,K的坐標(biāo),利用把矩形面積分成1:7的條件求解即可.

【小問1詳解】

解:設(shè)D(a,—2。+6),

即DE-a,CD——2a+6,

■:a(—2a+6)-4,

*,?2a1一6a+4=0,

解得:q=l,%=2,

■:CD>DE,

ax=1,即D(l,4).

【小問2詳解】

解:①設(shè)QM、PN和直線A3分別交于點(diǎn)T,S,

設(shè)M&O),則N(f+l,o),

則MT=—2f+6,NS=-2(f+l)+6=—2,t+4,

[-21+4+(-2%+6)]

c(NS+MT)MN

3梯形MNST=-------------------------------=-x4

222

3

解得

②,=3或"丁.

(i)當(dāng)交點(diǎn)如圖所示時(shí),

設(shè)尸(九4),則T(3,4),K\m—

..?由題意可知:SATPK="(〃?—3)[4-----|=-

2m)2

9

解得:叫=4,m=—(舍),

24

?,?1=4—1=3.

?.?由題意可知:S梯形MNKT=77-1e1——,

2V+lt)2

解得:23+耐,=23-7577(舍),

22

.23+7577

??t=---------------,

2

綜上所述,?=3或生上苴互.

2

【點(diǎn)睛】本題考查一次函數(shù),反比例函數(shù),矩形,平移知識點(diǎn),重點(diǎn)是掌握平移的性質(zhì),能夠正確表示出

平移后點(diǎn)的坐標(biāo)利用面積關(guān)系列出關(guān)于f的方程.

22.如圖1,已知,拋物線丁=以2+以+0經(jīng)過4(—1,0)、8(3,0)、C(0,3)三點(diǎn),點(diǎn)尸是拋物線上一

點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P位于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論