版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PREPARINGTHE
FOUNDATIONFORTHEAIOFTOMORROW
LianJyeSu,ResearchDirectorMalikSaadi,VicePresident,StrategicTechnologies
CONTENTS
EVERYAIINVESTMENTHASTOBEA
FORWARD-LOOKINGBUSINESSDECISION
The2020sareshapingupasthedecadeofArtificialIntelligence(AI).Withtherightinvestments,thetechnologyispoisedtobewidelydeployedinvariousInformationTechnology(IT)andOperationalTechnology(OT)usecases.PwC’sGlobalAIStudy:ExploitingtheAIRevolutionestimatesthatAIwillcontributeUS$15.7trilliontotheglobaleconomyby2030.
Notsurprisingly,multipleAIadoptionstudiesconductedbymajorAIplayers
revealthatmanybusinesseshaveincreasedtheirAIbudgetquitesignificantly
comparedtopreviousyears.However,mostinvestmentdecisionsaredrivenbythebroadpromiseofAIwithoutfocusingonspecificimplementationhurdlesinlargeorganizationswithlegacyfootprints.Asaresult,manybusinessesriskcreatinga
siloed,looselyintegrated,andproprietarysystem.
ThiswhitepaperaimstounpackthedifferentfacetsofAIandtheirrespective
computationalrequirements,showingthatAIinvestmentsmustbebasedonlong-termbusinessoutcomesandvalues.
EVERYAIINVESTMENTHASTOBEA
FORWARD-LOOKINGBUSINESSDECISION 1
MULTIMODALITYISTHEFUTUREOFAI 2
DIVERSITYINAIIMPLEMENTATION
ENVIRONMENTS 3
PRIVACYANDSECURITY-ENHANCEDAI 4
PREPARINGFORTHEAIOFTOMORROW 4
KEYPRINCIPLESOFAIINFRASTRUCTURE
INVESTMENT 7
CHARACTERISTICSOFAFUTURE-PROOFED
AIINFRASTRUCTURE 8
COMPREHENSIVEANDHETEROGENOUS
INFRASTRUCTURE 11
EDGE-TO-CLOUDVISION 13
OPENNESS 13
SECURITYINFUSEDATEVERYLAYER 14
BACKWARDCOMPATIBILITY 14
KEYTAKEAWAYSANDRECOMMENDATIONS
FORENDUSERS 15
TAKEAWAY1:DEVELOPACLEARINTERNALAI
ROADMAPBASEDONBUSINESSOUTCOMES 15
TAKEAWAY2:GETORGANIZATIONALBUY-IN 16
1
CommissionedbyIntelCorporation.
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
2
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
TAKEAWAY3:FOCUSONSOLUTIONPROVIDERS
ANDCHIPSETSUPPLIERSTHATEMBRACE
OPENNESS,FREEDOMOFCHOICE,TRUST,
ANDSECURITY 16
TAKEAWAY4:LEVERAGESUPPORT
FROMECOSYSTEMPARTNERS 16
CASESTUDY:INTEL 17
MULTIMODALITYISTHEFUTUREOFAI
Beforedivingintotheinfrastructurerequirements,itisworthwhilehavingan
overviewoftoday’sAI.Asimplementedtoday,AIgenerallyfocusesonfourmajorapplications,asdescribedinFigure1.
Figure1:MajorClassesofAIofToday
(Source:ABIResearch)
LANGUAGE
VISION
TABULAR
GRAPH
MULTIMODALAI
AllNaturalLanguageProcessing(NLP)tasks,suchas
Acombinationoftwoorthreedatasourcefor
recommendersystem,conversationalAI,etc.
machinetranslation,sentimentanalysis,speech
enhancement,speechsynthesis,andwakeworddetection.
Facialrecognitionforaccesscontrol,OpticalCharacter
Recognition(OCR),presencedetection,onjectandlandscapedetectionincomputationalphotography,andvideorecognitioninpublicsafetyandtrafficoptimization.
Informationfromvarioussensors,includingpressure,
temperature,vibration,rotation,acceleration,force,andacoustics,tomonitormachines’status,predictequipmentperformance,andtrackimportantassets.
Datathatareconnectedtooneanotherthroughspecific
relationship,suchassocialnetworkgraph,oraresequentialanddemonstratiespecificpatternsinaprocess,suchas
e-commerceconsumptionoronlinesearchdata.
AIapplications,suchasRoboticsProcessAutomation(RPA)andOpticalCharacterRecognition
(OCR),arealreadyautomatingmundaneandrepetitiveworkflows,helpinghumanemployees
performbetterattheircurrenttasksandassistingbusinesseswithstayingcompliantwithlegalrequirements.However,theAImodelsintheseapplicationsarefocusedonahighlystructuredworkloadusingoneofthefourdatatypesmentionedabove:language,vision,tabular,orgraph.Therefore,asignificantportionoftomorrow’sAImodelswillbemoreversatile,leveragingmost,ifnotall,ofthefourdatatypes.
TheseAImodelsaredesignedforavarietyoftasks.Theycanimprovelearning,decision-making,andexperiencesbyrelyingontrainingfromvariousdatasources,recordsandarchives,and
personalinformationwiththeindividual’sexplicitconsent.However,beforethisvisionbecomesareality,theindustryneedstodevelopmorerobustmultimodallearningmodelstoprocess
variousdatainrealtime.Thesemodelswillalsoneedtobesupportedbyhigh-performance
heterogeneouscomputingarchitecturetoenableawiderangeoftasksandfunctions,fromdatagatheringandstructuring,whichconsumesasignificantshareofprocessingresourcestoreal-timeinferenceandothermissioncriticaltasksthatrequireultra-lowlatencyandhighaccuracy.
DIVERSITYINAIIMPLEMENTATIONENVIRONMENTS
AItechnologysuppliersanddevelopersarealsotakingadvantageofnewAItechniquesand
edgecomputingtechnologytodeployAIacrossalldevicesfromthecloudtotheedge.Ononehand,CloudServiceProviders(CSPs)areleveragingscalableandhyperscaledatacentersto
developanddeployhigh-performancevision,language,andgraphmodelsthatareconstantly
increasinginsize.Ontheotherhand,businessesarelookingforAImodelsembeddedindevicesandgatewaystoimprovelatency,protectprivacy,andreducerelianceoncloudinfrastructure.
TinyMachineLearning(TinyML)pushestheboundaryfurtherbyintroducingultra-lowpowerAIinferenceinsensorsandbattery-powereddevices.SoftwarecapabilitieslikeNeuralArchitecturalSearch(NAS)andnewmodelcompressiontechnologieslikeknowledgedistillation,pruning,andquantizationwillenableAIdevelopersandimplementerstocreatethemostoptimizedmodelfortheirtargetenvironment.
AlltheseadvancementsmeanAImodelswillbepresentineverynodeofthecomputing
continuum,rangingfromhyperscaledatacenterstoregionaldatacenters,on-premisesservers,edgecomputinggateways,devices,andsensors.AlltheselocationsenablebusinessestodeployAIatthemostoptimallocationintermsofcomputingpower,latency,connectivity,andregulation.
Inaddition,thearrivalofnext-generationtelecommunicationtechnologies,suchas5Gand
Wi-Fi6,alsoallowsthetransferofalargeamountofdatafortrainingandinference.Whilesuchinfrastructureisnotcurrentlyavailableineverylocation,thisrealitywillchangeascloudAIgiants,telecommunicationserviceproviders,industrialcompanies,andedgecomputingcompanies
continuetobuildtherelevantinfrastructureinthenextfewyears.Asaresult,AIdeveloperswillwidelyintroduceAImodelsbasedonnewtechniques,heterogeneoushardware,andlowlatencyconnectivity.
Figure2:Edge-to-CloudComputingContinuum
(Source:ABIResearch)
Hyperscaledatacenter
Massive-scale
datacenter
builttosupport
alltypesof
workloadsina
centralized
location.
Regionaldatacenter
Regionaldata
center,including
hyperscaler
backbone
andservice
extensionsinto
theenterprise.
Country/metrodatacenter
Country-or
city-leveldata
center,including
hyperscaler
backbone
andservice
extensionsinto
theenterprise.
RadioAccessNetwork(RAN)
Equipmentthat
enablesnetwork
operatorsto
connectcustomer
assetstothe
network.Alsohosts
multi-accessedge
computeserver.
On-premisesserver
Serversthatare
locatedon
customers’
premises
tosupport
alloperational
workloads.
Gateway
Ahubthat
connectsto
multipledevices
andperformsdevicemanagementandconfigurations.
Deviceandsensor
Assets,machinery,toolsandequipment
thatfeature
internet
connectivityand
arelinkedtoa
publicand/or
3
privatedatacenter.
CLOUDCENTRICEDGECENTRIC
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
PRIVACYANDSECURITY-ENHANCEDAI
AsidefromclassicalAIandsomeMachineLearning(ML)models,mostoftoday’sDeepLearning(DL)modelsareblackboxesthatlacktransparency.AIdevelopersdonothavecomplete
knowledgeofalltheindividualneurons,layers,andparametersinaDLmodelthatworktogethertoproducefinaloutput.Theroleofallthesecomponentsandtheirinfluenceovereachother
remainslargelyunexplained.
Movingforward,AIdeveloperswillmakeAImodelsmoretransparent.Inmostcases,adata
andAIdevelopmentplatformwillbedesignedtoexplaintousersthelimitationsoftrainingandtestingdata,thelogicbehindallAItrainingandinferenceprocesses,andpotentialbias,drift,andothergaps.Insomecases,AImodelsmaybedesignedtoexplainthemselvestotheendusers.ThetransparencyandexplainabilitywillenableAImodelstobeusedinhigh-riskenvironments,astheycanwithstandscrutinyandevaluation.
Furthermore,AIdeveloperscanenhancesecurityinanAIsystembylimitingdatatransfertothecloudanddeployingtheAImodelattheedge.Bykeepingandprocessingrawdataattheedge,endusersdonotneedtoworryabouttheirdatabeinghijackedbymaliciousactors.Atthesametime,consumersconcernedaboutstoringPersonalIdentifiableInformation(PII)inthecloudwillnolongerneedtoworry,assuchdatawillbeprocessedinedgedevicesandlocalservers.
PREPARINGFORTHEAIOFTOMORROW
WhenwecomparethestateofAItodaywiththevisionfortomorrow’sAI,afewdistinctcharacteristicsjumpout,asshowninFigure4.
Figure3:AIEvolutionandTechnologicalChallengesandRequirements
(Source:ABIResearch)
TechnologicalChallenges
Specializedandsiloed
AIofTodayAIofTomorrowandRequirements
MultimodallearningmodelwithpowerfulAIchipsetforreal-timeinference
Multi-taskandfullintegration
ContinualimprovementofNAS,modelcompression,andAutoMLSolution
Eithersmallorbig
Diverseinsizeandresourceequipment
Edgecloudoredge
Federatedlearningmodelsthatbenefit
fromincreasingdiversityofcomputing
nodesandhighdatabandwidth
Edge-to-cloudcontinuum
DataandAIdevelopmentplatform
thatcanexplainprediction,visualize
behavior,andresolvebiases
Blackbox
4
Transparentandexplainable
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
TotrulymaketheAIoftomorrowareality,itisapparentthatbusinesseswillneedtocontinuetheirinvestmentintherightAIinfrastructureandapproach.
NewLearningTechniques
TheevolutionofAIwillbeshapedbytheemergenceofnewAItechniques,suchasfederated
learning,multimodallearning,graphDL,reinforcementlearning,andmeta-learning.TheseAI
techniquesuseafullydistributed,highlycustomizedcomputinglandscapetolearnandhandlemultipletasks.Theabilitytointerpretcontextualinformation,understandthelinkagebetweendifferentfactors,andworkandlearnfromotherAImodelscreatesimmenseopportunitiesforAItochangehowbusinessesoperate.Theywillbereadytohandlemorecomplicatedtasksthanhumanemployeescanhandle.
Table1:KeyAITrendsandTheirBusinessImplications
(Source:ABIResearch)
NewAI
Techniques
Descriptions
Strengths
TechnologyPlatformRequirements
Federatedlearning
FederatedlearningisadistributedMLapproachinwhichmultipleuserscollaborativelytrainamodelwithoutmovingdatatoasingleserverordata
center.Instead,eachcomputenodewillexecutethesamemodel,trainsuchamodelonthelocaldata,andthuscomputeandstorealocalversionofthemodelineachnode.
FederatedlearningprovidesedgedeviceswithqualityMLmodelswithoutcentralizingthedata.Deployedinvariousenvironments,includingsmartphones,healthcare,andfinance,thetechniqueallowstheaccessofdatasetsfromdifferentusers,institutions,ordatabases,whilehelpingtocomplywithrequiredprivacyandconfidentialitylaws.
Stableandubiquitous
connectivitybackbone,withAIcomputetakingplacein
localandcloudenvironments.Frequentexchangeofdataandsyncbetweenthecloudanddifferentedgenodestoensurethemodelisuptodate.
Multimodallearning
Multimodallearningcansimultaneouslyprocessvariousdatatypes(image,text,speech,numericaldata)usingmultiplealgorithms.MultimodalAIcaninterpretsuchmultimodalsignalstogetherandmakedecisionsbasedoncontextual
understanding.
AI-basedonmultimodallearningcanmimichumandecision-makingbyingestingdifferentdatasources.Asaresult,itoftenoutperformssingle-modalAIinmanyreal-worldproblems,suchascustomerservices,clientengagement,andpatientcare.
Databasesthatcaningest
variousdatasourcesandAImodelsthatprocessdifferentdatamodalitiesandperforminferenceinreal-time.
Reinforcementlearning
ReinforcementlearningisanMLtrainingmethodthatrewardsthelearningagentwhenmaking
desiredbehaviorsandpunishesitwhenmakingundesiredones.Generally,areinforcement
learningagentcanperceiveandinterpret
itsenvironment,takeactions,andlearnthe
associationsbetweenstimuli,activities,andtheoutcomesofitsactionsthroughtrialanderror.
Reinforcementlearninghasbeenwidelyadoptedin
simulationtotrainandretrainbehaviorsofautonomousvehiclesandrobotsfortrafficmanagement,material
handling,routeoptimization,andspacemanagement.Asidefromthephysicalsystem,thesoftwarecanalsobetrainedusingreinforcementlearningforadata-drivenproductorprocessoptimization,suchassupplychainoptimization,prototyping,andgenerativedesign.
PowerfulAIcomputeplatforminthecloudwithprecise
andrealisticrenderingof
thereal-worldenvironment.
Alternatively,ahighlyoptimized,unsupervisedself-learning
modelinenddevices.
GraphNeuralNetwork(GNN)
GNNsareDLneuralnetworksdesignedtoperforminferenceondatastoredingraphdatabases.Graphdatabasesconnectspecificdatapoints(nodes)andcreaterelationships(edges)intheformofgraphsthattheusercanthenpullwithqueries.TheAIcanunderstandtheinterdependencybetweeneach
datapointandprovidesrelevantpredictions.
GNNsareidealforanalyzingaspecificissuethat
involvesnumerousfactors.Forexample,creditriskforcreditcardcustomersrequiresunderstandingcurrentcreditscores,credithistory,employment,income,andothersocio-economicfactors.Otherusecasesincluderecommendationsystems,molecularcellstructurestudy,readingcomprehension,andsocialinfluenceprediction.
HardwareandsoftwareareoptimizedforGNNs,asGNNstakemuchlongertotrain.
Meta-learning
Meta-learningreferstoMLalgorithmsthat
learnfromtheoutputofotherAIalgorithms.
Thesemodelscanlearnacrossasuiteofrelatedpredictiontasksthroughanadaptiveprocess,
allowingthemtospeeduptheirlearningprocesswhilelearningmultiplefunctionssimultaneously.
Meta-learningisstillembryonic,soitisratherdifficult
topredicthowinfluentialandimpactfulthetechnologywillbecome.Nonetheless,ifthecurrentprediction
isaccurate,meta-learningmodelscanlearnquickly,
requiringlesstrainingtimeandfewerresourcestodesignanddevelop.Thiswillsaveenormousamountsoftimeandacceleratetimetomarket.
Ultra-high-performance
hardwareandsoftware,asmeta-learningisanensembleofthemostadvanced
MLtechniques,suchas
reinforcementlearningandtransferlearning.
5
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
Moreimportantly,theyallowbusinessestoscaleoutandscaleupdependingonbusiness
needswithoutneedingtoexpandandtraintheirworkforce.Someofthesetechniques,suchasfederatedlearningandreinforcementlearning,havealreadybeenadoptedbycloudAIgiantsandlargecorporationstodesignadvancedAImodelsinlarge-scalerecommendersystems,
frauddetection,andvirtualassistance.Meta-learningandGNNs,ontheotherhand,areslowlymaturingandappearinginsomeinterestingusecases,suchasdrugdesign,roboticstraining,anddiseasediagnostics.
OptimizedAIInfrastructure
Inrecentyears,AItechnologyprovidershaveprogressivelyreducedthebarrierstoentryby
activelylaunchinginnovativeproductsandservices.GraphicProcessingUnits(GPUs)and
Application-SpecificIntegratedCircuits(ASICs)arebeingadoptedforAItrainingandinference.
Nowadays,moreandmoregeneral-purposeCentralProcessingUnits(CPUs)cansupportAI
inferenceandtraining.Theintroductionofpre-traininglanguagemodelsallowsdevelopersto
buildcomplexapplications,suchasspeechrecognitionandmachinetranslation,withouttrainingamodelfromscratch.AutoMachineLearning(AutoML)providesmethods,tools,andtechniquestomakethedevelopmentprocesseasierfornon-AIexpertsbyautomatingAIworkflow.
Notsurprisingly,alltheseadvancementshaveledtoahugedemandforAIchipsets.AccordingtoABIResearch’sArtificialIntelligenceandMachineLearningmarketdata(MD-AIML-109),theglobalAIchipsetmarketisestimatedtobeUS$32.3billionin2022.ThisincludesthesalesofAItrainingandinferencechipsets,includingtheCPU,GPU,FieldProgrammableGatedArray(FPGA),NeuralProcessingUnit(NPU),AIaccelerator,microcontroller,andneuromorphicchipset,inalldata
centersandenddevices.Furthermore,thedemocratizationofAIwillleadtoAIbeingdeployedacrossawiderangeofphysicalsitesandcomputenodes.Asaresult,thismarketisexpectedtogrowtoUS$68.8billionin2027,withaCompoundAnnualGrowthRate(CAGR)of26%.
Chart1:TotalRevenuefromAIChipsetSales
WorldMarkets:2020to2027
(Source:ABIResearch)
35
AnnualRevenue(US$Billions)
30
25
20
15
10
5
0
CloudAIChipsetsEdgeAIChipset
6
20202021202220232024202520262027
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
KEYPRINCIPLESOFAIINFRASTRUCTUREINVESTMENT
Today’sAIisnarrowlyfocused,requiresawiderangeofexpertise,andexistsinasilo.Incontrast,theAIoftomorrowrequiresenormousamountsofresourcesanddeeptechnologicalknowledge,whichremainsoutofreachformostbusinesses.Therefore,businessesmuststartearly,identify
thebusinessoutcomesthatcannotbeeasilyachievedwithoutAI,activelybuildinternalcapabilities,androllouttheseadvancedAItechniqueswidelyacrosstheentireorganization.Insummary,
belowarefourkeypillarswhenconsideringAIinfrastructure:
?AIInfrastructureMustBeDrivenbyBusinessOutcomes:ThevisionofAIinfrastructuremustbebasedontheintendedbusinessoutcomeofAIdeployment.Businessesmustfirstunderstandtheshort-andlong-termvaluesAIbringstotheiroperationbeforedesigning
themostsuitableAImodels.WhenanAIprojecthasaclearbusinessoutcome,ithasactualfinancialvaluesthatseniormanagementcanrecognize.
?AIInfrastructureMustBeHeterogenousandFlexible:TounlocktheactualvalueofAI
andyieldmaximumbenefits,scale-upandscale-outofAIapplicationsarecritical.Building
anAIinfrastructurethatofferstheproperfoundationtosupportdifferentfacetsofAImodeldesign,development,anddeploymentacrossdifferentcomputingplatformsgoesalongwaytoprotectandfuture-proofcurrentinvestments.AheterogeneouscomputeplatformwillofferthebestperformanceacrossallAItasks.AIdeveloperscanusetheCPUfordatagatheringandpreparation,beforeswitchingtotheGPUandASICformodeltraining,andfinallyusingeithertheGPU,ASIC,orCPUforAIinferenceworkload.
?AIInfrastructureMustBeBackwardCompatible:AllAIinfrastructuremustbeableto
workwithexistingenterprisesolutions.Therefore,settingaversatile,robust,andinteroperablefoundationwithallexistingsolutionsisamust.Incompatibilityriskscreatingmanysilosinthebusinessoperation,leadingtopoorlyoptimizedIT/OTinfrastructureandprocesses.
?AIInfrastructureMustBeOpenandSecure:Businessesalwayswanttoavoidvendorlock-in.AnAIinfrastructureconsistingofopenhardwareandsoftwarethatcaninteroperatewithothersolutionsissignificantinensuringsmoothIT/OTprocesses.Atthesametime,opennessshouldnotleadtoacompromiseinsecurity.TheAIfoundationmustfeaturestate-of-the-artcybersecurityanddataprotectionmechanismstopreventhacking,protectuserdata,and
7
complywithlegalrequirements.
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
ItisclearthatAIisstillinitsinfancy,andbuildingtheproperfoundationforitiscriticalforits
futuresuccess.InsteadoflookingatAIfromtoday’slens,allbusinessesmusthaveaclearlong-termplan.Thisvisionwillhelpthemnavigatethechallengesandtechnologyrequirementsfor
AI,helpingthemmaketherightdecisionininvestinginthemostoptimalandfuture-proofAI
infrastructure.ThefollowingsectiondiscussesvariousapproachesbusinessescantaketodeployAI.Inaddition,ithighlightsthekeyfeaturesandcharacteristicsbusinessesmustpayattentiontowhenselectingtheirAItechnologies.
CHARACTERISTICSOFAFUTURE-PROOFEDAIINFRASTRUCTURE
EnablingAIbroadlyacrossenterprisesrequiresadifferentmindset.BusinessesmustunderstandthatbuildingAIforbusinessisacontinuousprocessinvolvingmanybuildingblocks.AsshowninFigure5,severalkeyrecentadvancementshaveallowedAItobecomeareality.
Figure4:KeyAITechnologyTrends
(Source:ABIResearch)
User-FriendlyOpen-SourceAITools
DataScienceand
AIDeveloperCommunity
IT/OTConvergence
GrowingAIEcosystem
AI
Democratizationof
ComputingResourcesDemocratizationof
EdgeAI
EmergenceofLargeMLModels
8
AllofthemhaveasignificantimpactonhowbusinessesshoulddeploytheirAI.
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
9
PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW
Table2:KeyAITechnologyTrendsandTheirBusinessImplications
(Source:ABIResearch)
KeyTrends
Descriptions
BusinessImplications
IT/OT
convergence
ITandOThavetraditionallybeendevelopedseparately,withnoabilitytoexploitoperationsandproductiondatatomakemoreinformeddecisionsforoptimizedworkflowand
well-plannedproductionandmaintenanceprocesses.COVID-19hasspedupthedigitaltransformationprocessinmanybusinesses,leadingtoemergingtechnologies,suchastheInternetofThings(IoT)androboticsautomation.Asaresult,businessesalsostarttocollectmoreoperationaldatathatareveryusefulforplanning,optimization,andupgrades.
Thisconvergencewillenablebusinessestogaininsightandmakedata-drivendecisions.Theycanalsooptimizetheirexistingworkflowswithoutneedingtoscaleuprapidly.
Democratizationofcomputingresources
ThedemocratizationofcomputingresourcesforAIhasbeenachievedbythewideavailabilityofpubliccloudcomputing.Indeed,AIdevelopersmaywanttoleveragethecentralized
processingandstorageofferedbyCSPsinsteadofdeployingtheirownAIhardware,whichisnoteconomicalenough,mainlyforexecutingdenseAInetworks.Theuniformityand
scalabilityofCSPs’computeandstoragearchitectureenablethemtohandlecompute-intensiveDLmodelsonanon-demandbasis,significantlyloweringthebarrier-to-entryforAIdeveloperswithouttheabilitytobuildandmaintaintheirownAIinfrastructure.AsAImodelsarebecomingmorecomplex,theaccessprovidedbyCSPsisessentialforthedemocratizationofAI.
BusinessesmustinvestintherightAIinfrastructurebybuyingfromestablishedCSPsorbuildingtheirprivatecloudinfrastructure.Whilepubliccloud
solutionsarescalable,theycanbecostlywhen
comparedtobeingwell-plannedforprivate
infrastructurebasedonlong-termsgoals.Therefore,businessesshouldalsoconsiderleveragingthe
bestofbothworldswithhybridclouddeploymentstogetthebestprice-performanceadvantageandflexibility.
EmergenceoflargeDLmodels
Anotherprimaryreasonbehindthegaininaccuracyandperformanceisthegrowthin
DLmodels,preciselythenumberofparametersandhyperparameters.AImodelshave
scaledsignificantlyinthepastyears.Dependingontheapplication,largemodelsprovide
fundamentallyuniqueadvantages.Forexample,OpenAI’sGPT-3,widelyconsideredthemostadvancedNaturalLanguageProcessing(NLP)modelof2021,has125millionto175billionparametersandcanhandleadvancedapplications,suchasgenerativeemailsordocumentsummaries.NewermodelslikeBLOOMfromBigScience,whichhas176billionparameters,supportmultiplehumanlanguagesandprogramminglanguages.
BusinessesneedtoconsiderthecostofAItrainingandimplementation.Forcontext,thecloud
computingcostforthetrainingofBLOOM,whichisaround330Gigabytes(GB)insizeisestimatedtobeinthemulti-million-dollarrange.Asidefromtheproperhardwareinfrastructure,businessesmustalsoidentifythesuitableapplicationsandusecasestheywanttodeploy.
DemocratizationofedgeAI
HighlyoptimizedandminiaturizedAImodelsarecurrentlyembeddedinsmartsensors,
devices,andgateways.Thesecarefullycraftedsmallermodelscanalsoperformnarrowly-focusedapplications,specificallyinalways-oncomputervisionandtime-seriesdataanalysis.Solutionprovidershaveintroducedpower-efficientAIprocessors(ASIC,NPU,neuromorphicchipset),DLmodeloptimizationtechniques(knowledgedistillation,pruning,and
quantization),developer-friendlytoolsandservices,andmoreintelligentresourceallocation.
EdgeAIisawaytominimizelatency,privacyrisk,
andconnectivitycosts.Businessesmustlookintothelong-termbenefitsofedgeAIanddevelopastrategytodeployintheiroperation.
GrowingAIecosystem
TheAIecosystemcontinuestogrowatarapidrate.AIstartupsareofferingawiderangeofsolutions.Themostwell-knownstartupsworkonfacialrecognition,AdvancedDriver-AssistanceSystems(ADAS),andNLP.COVID-19hasbecomeacatalystbehindtherapidadoptionofAI-basedenterpriseautomation,suchasRPA,AI-aidedspeechrecognition,transcriptionandtranslation,andsalesandmarketingenablementtools.ThoselookingtobuildtheirowncustomAIwillleantowardstar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年出口貨運代理與綠色物流運輸合同3篇
- 貿易關稅培訓課程設計
- 溢流型球磨機操作、維護、檢修規(guī)程模版(2篇)
- 二零二五年度體育賽事剪輯與直播合作合同3篇
- 工資集體協(xié)商制度范文(2篇)
- 戰(zhàn)爭主題課程設計圖
- 工地治安綜合管理獎懲制度模版(2篇)
- 二零二五年度新能源汽車充電站建設合同范本2篇
- 公司交通安全管理制度(2篇)
- 2025年度綠色水電站建設與承包經營一體化合同3篇
- 安全教育教案大班40篇
- 叉車工安全培訓資料
- 九年級英語教學反思
- 外研新標準初中英語七年級上冊冊寒假提升補全對話短文練習三附答案解析
- 《旅游消費者行為學》-課程教學大綱
- YY/T 1117-2024石膏繃帶
- 【魔鏡洞察】2024藥食同源保健品滋補品行業(yè)分析報告
- 蘇教版小學三年級科學上冊單元測試題附答案(全冊)
- 2024年人教版初一語文(上冊)期末試卷及答案(各版本)
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題及答案
- 物流園保安服務投標方案(技術方案)
評論
0/150
提交評論