2023人工智能白皮書:為AI奠基未來(英文版)_第1頁
2023人工智能白皮書:為AI奠基未來(英文版)_第2頁
2023人工智能白皮書:為AI奠基未來(英文版)_第3頁
2023人工智能白皮書:為AI奠基未來(英文版)_第4頁
2023人工智能白皮書:為AI奠基未來(英文版)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PREPARINGTHE

FOUNDATIONFORTHEAIOFTOMORROW

LianJyeSu,ResearchDirectorMalikSaadi,VicePresident,StrategicTechnologies

CONTENTS

EVERYAIINVESTMENTHASTOBEA

FORWARD-LOOKINGBUSINESSDECISION

The2020sareshapingupasthedecadeofArtificialIntelligence(AI).Withtherightinvestments,thetechnologyispoisedtobewidelydeployedinvariousInformationTechnology(IT)andOperationalTechnology(OT)usecases.PwC’sGlobalAIStudy:ExploitingtheAIRevolutionestimatesthatAIwillcontributeUS$15.7trilliontotheglobaleconomyby2030.

Notsurprisingly,multipleAIadoptionstudiesconductedbymajorAIplayers

revealthatmanybusinesseshaveincreasedtheirAIbudgetquitesignificantly

comparedtopreviousyears.However,mostinvestmentdecisionsaredrivenbythebroadpromiseofAIwithoutfocusingonspecificimplementationhurdlesinlargeorganizationswithlegacyfootprints.Asaresult,manybusinessesriskcreatinga

siloed,looselyintegrated,andproprietarysystem.

ThiswhitepaperaimstounpackthedifferentfacetsofAIandtheirrespective

computationalrequirements,showingthatAIinvestmentsmustbebasedonlong-termbusinessoutcomesandvalues.

EVERYAIINVESTMENTHASTOBEA

FORWARD-LOOKINGBUSINESSDECISION 1

MULTIMODALITYISTHEFUTUREOFAI 2

DIVERSITYINAIIMPLEMENTATION

ENVIRONMENTS 3

PRIVACYANDSECURITY-ENHANCEDAI 4

PREPARINGFORTHEAIOFTOMORROW 4

KEYPRINCIPLESOFAIINFRASTRUCTURE

INVESTMENT 7

CHARACTERISTICSOFAFUTURE-PROOFED

AIINFRASTRUCTURE 8

COMPREHENSIVEANDHETEROGENOUS

INFRASTRUCTURE 11

EDGE-TO-CLOUDVISION 13

OPENNESS 13

SECURITYINFUSEDATEVERYLAYER 14

BACKWARDCOMPATIBILITY 14

KEYTAKEAWAYSANDRECOMMENDATIONS

FORENDUSERS 15

TAKEAWAY1:DEVELOPACLEARINTERNALAI

ROADMAPBASEDONBUSINESSOUTCOMES 15

TAKEAWAY2:GETORGANIZATIONALBUY-IN 16

1

CommissionedbyIntelCorporation.

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

2

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

TAKEAWAY3:FOCUSONSOLUTIONPROVIDERS

ANDCHIPSETSUPPLIERSTHATEMBRACE

OPENNESS,FREEDOMOFCHOICE,TRUST,

ANDSECURITY 16

TAKEAWAY4:LEVERAGESUPPORT

FROMECOSYSTEMPARTNERS 16

CASESTUDY:INTEL 17

MULTIMODALITYISTHEFUTUREOFAI

Beforedivingintotheinfrastructurerequirements,itisworthwhilehavingan

overviewoftoday’sAI.Asimplementedtoday,AIgenerallyfocusesonfourmajorapplications,asdescribedinFigure1.

Figure1:MajorClassesofAIofToday

(Source:ABIResearch)

LANGUAGE

VISION

TABULAR

GRAPH

MULTIMODALAI

AllNaturalLanguageProcessing(NLP)tasks,suchas

Acombinationoftwoorthreedatasourcefor

recommendersystem,conversationalAI,etc.

machinetranslation,sentimentanalysis,speech

enhancement,speechsynthesis,andwakeworddetection.

Facialrecognitionforaccesscontrol,OpticalCharacter

Recognition(OCR),presencedetection,onjectandlandscapedetectionincomputationalphotography,andvideorecognitioninpublicsafetyandtrafficoptimization.

Informationfromvarioussensors,includingpressure,

temperature,vibration,rotation,acceleration,force,andacoustics,tomonitormachines’status,predictequipmentperformance,andtrackimportantassets.

Datathatareconnectedtooneanotherthroughspecific

relationship,suchassocialnetworkgraph,oraresequentialanddemonstratiespecificpatternsinaprocess,suchas

e-commerceconsumptionoronlinesearchdata.

AIapplications,suchasRoboticsProcessAutomation(RPA)andOpticalCharacterRecognition

(OCR),arealreadyautomatingmundaneandrepetitiveworkflows,helpinghumanemployees

performbetterattheircurrenttasksandassistingbusinesseswithstayingcompliantwithlegalrequirements.However,theAImodelsintheseapplicationsarefocusedonahighlystructuredworkloadusingoneofthefourdatatypesmentionedabove:language,vision,tabular,orgraph.Therefore,asignificantportionoftomorrow’sAImodelswillbemoreversatile,leveragingmost,ifnotall,ofthefourdatatypes.

TheseAImodelsaredesignedforavarietyoftasks.Theycanimprovelearning,decision-making,andexperiencesbyrelyingontrainingfromvariousdatasources,recordsandarchives,and

personalinformationwiththeindividual’sexplicitconsent.However,beforethisvisionbecomesareality,theindustryneedstodevelopmorerobustmultimodallearningmodelstoprocess

variousdatainrealtime.Thesemodelswillalsoneedtobesupportedbyhigh-performance

heterogeneouscomputingarchitecturetoenableawiderangeoftasksandfunctions,fromdatagatheringandstructuring,whichconsumesasignificantshareofprocessingresourcestoreal-timeinferenceandothermissioncriticaltasksthatrequireultra-lowlatencyandhighaccuracy.

DIVERSITYINAIIMPLEMENTATIONENVIRONMENTS

AItechnologysuppliersanddevelopersarealsotakingadvantageofnewAItechniquesand

edgecomputingtechnologytodeployAIacrossalldevicesfromthecloudtotheedge.Ononehand,CloudServiceProviders(CSPs)areleveragingscalableandhyperscaledatacentersto

developanddeployhigh-performancevision,language,andgraphmodelsthatareconstantly

increasinginsize.Ontheotherhand,businessesarelookingforAImodelsembeddedindevicesandgatewaystoimprovelatency,protectprivacy,andreducerelianceoncloudinfrastructure.

TinyMachineLearning(TinyML)pushestheboundaryfurtherbyintroducingultra-lowpowerAIinferenceinsensorsandbattery-powereddevices.SoftwarecapabilitieslikeNeuralArchitecturalSearch(NAS)andnewmodelcompressiontechnologieslikeknowledgedistillation,pruning,andquantizationwillenableAIdevelopersandimplementerstocreatethemostoptimizedmodelfortheirtargetenvironment.

AlltheseadvancementsmeanAImodelswillbepresentineverynodeofthecomputing

continuum,rangingfromhyperscaledatacenterstoregionaldatacenters,on-premisesservers,edgecomputinggateways,devices,andsensors.AlltheselocationsenablebusinessestodeployAIatthemostoptimallocationintermsofcomputingpower,latency,connectivity,andregulation.

Inaddition,thearrivalofnext-generationtelecommunicationtechnologies,suchas5Gand

Wi-Fi6,alsoallowsthetransferofalargeamountofdatafortrainingandinference.Whilesuchinfrastructureisnotcurrentlyavailableineverylocation,thisrealitywillchangeascloudAIgiants,telecommunicationserviceproviders,industrialcompanies,andedgecomputingcompanies

continuetobuildtherelevantinfrastructureinthenextfewyears.Asaresult,AIdeveloperswillwidelyintroduceAImodelsbasedonnewtechniques,heterogeneoushardware,andlowlatencyconnectivity.

Figure2:Edge-to-CloudComputingContinuum

(Source:ABIResearch)

Hyperscaledatacenter

Massive-scale

datacenter

builttosupport

alltypesof

workloadsina

centralized

location.

Regionaldatacenter

Regionaldata

center,including

hyperscaler

backbone

andservice

extensionsinto

theenterprise.

Country/metrodatacenter

Country-or

city-leveldata

center,including

hyperscaler

backbone

andservice

extensionsinto

theenterprise.

RadioAccessNetwork(RAN)

Equipmentthat

enablesnetwork

operatorsto

connectcustomer

assetstothe

network.Alsohosts

multi-accessedge

computeserver.

On-premisesserver

Serversthatare

locatedon

customers’

premises

tosupport

alloperational

workloads.

Gateway

Ahubthat

connectsto

multipledevices

andperformsdevicemanagementandconfigurations.

Deviceandsensor

Assets,machinery,toolsandequipment

thatfeature

internet

connectivityand

arelinkedtoa

publicand/or

3

privatedatacenter.

CLOUDCENTRICEDGECENTRIC

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

PRIVACYANDSECURITY-ENHANCEDAI

AsidefromclassicalAIandsomeMachineLearning(ML)models,mostoftoday’sDeepLearning(DL)modelsareblackboxesthatlacktransparency.AIdevelopersdonothavecomplete

knowledgeofalltheindividualneurons,layers,andparametersinaDLmodelthatworktogethertoproducefinaloutput.Theroleofallthesecomponentsandtheirinfluenceovereachother

remainslargelyunexplained.

Movingforward,AIdeveloperswillmakeAImodelsmoretransparent.Inmostcases,adata

andAIdevelopmentplatformwillbedesignedtoexplaintousersthelimitationsoftrainingandtestingdata,thelogicbehindallAItrainingandinferenceprocesses,andpotentialbias,drift,andothergaps.Insomecases,AImodelsmaybedesignedtoexplainthemselvestotheendusers.ThetransparencyandexplainabilitywillenableAImodelstobeusedinhigh-riskenvironments,astheycanwithstandscrutinyandevaluation.

Furthermore,AIdeveloperscanenhancesecurityinanAIsystembylimitingdatatransfertothecloudanddeployingtheAImodelattheedge.Bykeepingandprocessingrawdataattheedge,endusersdonotneedtoworryabouttheirdatabeinghijackedbymaliciousactors.Atthesametime,consumersconcernedaboutstoringPersonalIdentifiableInformation(PII)inthecloudwillnolongerneedtoworry,assuchdatawillbeprocessedinedgedevicesandlocalservers.

PREPARINGFORTHEAIOFTOMORROW

WhenwecomparethestateofAItodaywiththevisionfortomorrow’sAI,afewdistinctcharacteristicsjumpout,asshowninFigure4.

Figure3:AIEvolutionandTechnologicalChallengesandRequirements

(Source:ABIResearch)

TechnologicalChallenges

Specializedandsiloed

AIofTodayAIofTomorrowandRequirements

MultimodallearningmodelwithpowerfulAIchipsetforreal-timeinference

Multi-taskandfullintegration

ContinualimprovementofNAS,modelcompression,andAutoMLSolution

Eithersmallorbig

Diverseinsizeandresourceequipment

Edgecloudoredge

Federatedlearningmodelsthatbenefit

fromincreasingdiversityofcomputing

nodesandhighdatabandwidth

Edge-to-cloudcontinuum

DataandAIdevelopmentplatform

thatcanexplainprediction,visualize

behavior,andresolvebiases

Blackbox

4

Transparentandexplainable

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

TotrulymaketheAIoftomorrowareality,itisapparentthatbusinesseswillneedtocontinuetheirinvestmentintherightAIinfrastructureandapproach.

NewLearningTechniques

TheevolutionofAIwillbeshapedbytheemergenceofnewAItechniques,suchasfederated

learning,multimodallearning,graphDL,reinforcementlearning,andmeta-learning.TheseAI

techniquesuseafullydistributed,highlycustomizedcomputinglandscapetolearnandhandlemultipletasks.Theabilitytointerpretcontextualinformation,understandthelinkagebetweendifferentfactors,andworkandlearnfromotherAImodelscreatesimmenseopportunitiesforAItochangehowbusinessesoperate.Theywillbereadytohandlemorecomplicatedtasksthanhumanemployeescanhandle.

Table1:KeyAITrendsandTheirBusinessImplications

(Source:ABIResearch)

NewAI

Techniques

Descriptions

Strengths

TechnologyPlatformRequirements

Federatedlearning

FederatedlearningisadistributedMLapproachinwhichmultipleuserscollaborativelytrainamodelwithoutmovingdatatoasingleserverordata

center.Instead,eachcomputenodewillexecutethesamemodel,trainsuchamodelonthelocaldata,andthuscomputeandstorealocalversionofthemodelineachnode.

FederatedlearningprovidesedgedeviceswithqualityMLmodelswithoutcentralizingthedata.Deployedinvariousenvironments,includingsmartphones,healthcare,andfinance,thetechniqueallowstheaccessofdatasetsfromdifferentusers,institutions,ordatabases,whilehelpingtocomplywithrequiredprivacyandconfidentialitylaws.

Stableandubiquitous

connectivitybackbone,withAIcomputetakingplacein

localandcloudenvironments.Frequentexchangeofdataandsyncbetweenthecloudanddifferentedgenodestoensurethemodelisuptodate.

Multimodallearning

Multimodallearningcansimultaneouslyprocessvariousdatatypes(image,text,speech,numericaldata)usingmultiplealgorithms.MultimodalAIcaninterpretsuchmultimodalsignalstogetherandmakedecisionsbasedoncontextual

understanding.

AI-basedonmultimodallearningcanmimichumandecision-makingbyingestingdifferentdatasources.Asaresult,itoftenoutperformssingle-modalAIinmanyreal-worldproblems,suchascustomerservices,clientengagement,andpatientcare.

Databasesthatcaningest

variousdatasourcesandAImodelsthatprocessdifferentdatamodalitiesandperforminferenceinreal-time.

Reinforcementlearning

ReinforcementlearningisanMLtrainingmethodthatrewardsthelearningagentwhenmaking

desiredbehaviorsandpunishesitwhenmakingundesiredones.Generally,areinforcement

learningagentcanperceiveandinterpret

itsenvironment,takeactions,andlearnthe

associationsbetweenstimuli,activities,andtheoutcomesofitsactionsthroughtrialanderror.

Reinforcementlearninghasbeenwidelyadoptedin

simulationtotrainandretrainbehaviorsofautonomousvehiclesandrobotsfortrafficmanagement,material

handling,routeoptimization,andspacemanagement.Asidefromthephysicalsystem,thesoftwarecanalsobetrainedusingreinforcementlearningforadata-drivenproductorprocessoptimization,suchassupplychainoptimization,prototyping,andgenerativedesign.

PowerfulAIcomputeplatforminthecloudwithprecise

andrealisticrenderingof

thereal-worldenvironment.

Alternatively,ahighlyoptimized,unsupervisedself-learning

modelinenddevices.

GraphNeuralNetwork(GNN)

GNNsareDLneuralnetworksdesignedtoperforminferenceondatastoredingraphdatabases.Graphdatabasesconnectspecificdatapoints(nodes)andcreaterelationships(edges)intheformofgraphsthattheusercanthenpullwithqueries.TheAIcanunderstandtheinterdependencybetweeneach

datapointandprovidesrelevantpredictions.

GNNsareidealforanalyzingaspecificissuethat

involvesnumerousfactors.Forexample,creditriskforcreditcardcustomersrequiresunderstandingcurrentcreditscores,credithistory,employment,income,andothersocio-economicfactors.Otherusecasesincluderecommendationsystems,molecularcellstructurestudy,readingcomprehension,andsocialinfluenceprediction.

HardwareandsoftwareareoptimizedforGNNs,asGNNstakemuchlongertotrain.

Meta-learning

Meta-learningreferstoMLalgorithmsthat

learnfromtheoutputofotherAIalgorithms.

Thesemodelscanlearnacrossasuiteofrelatedpredictiontasksthroughanadaptiveprocess,

allowingthemtospeeduptheirlearningprocesswhilelearningmultiplefunctionssimultaneously.

Meta-learningisstillembryonic,soitisratherdifficult

topredicthowinfluentialandimpactfulthetechnologywillbecome.Nonetheless,ifthecurrentprediction

isaccurate,meta-learningmodelscanlearnquickly,

requiringlesstrainingtimeandfewerresourcestodesignanddevelop.Thiswillsaveenormousamountsoftimeandacceleratetimetomarket.

Ultra-high-performance

hardwareandsoftware,asmeta-learningisanensembleofthemostadvanced

MLtechniques,suchas

reinforcementlearningandtransferlearning.

5

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

Moreimportantly,theyallowbusinessestoscaleoutandscaleupdependingonbusiness

needswithoutneedingtoexpandandtraintheirworkforce.Someofthesetechniques,suchasfederatedlearningandreinforcementlearning,havealreadybeenadoptedbycloudAIgiantsandlargecorporationstodesignadvancedAImodelsinlarge-scalerecommendersystems,

frauddetection,andvirtualassistance.Meta-learningandGNNs,ontheotherhand,areslowlymaturingandappearinginsomeinterestingusecases,suchasdrugdesign,roboticstraining,anddiseasediagnostics.

OptimizedAIInfrastructure

Inrecentyears,AItechnologyprovidershaveprogressivelyreducedthebarrierstoentryby

activelylaunchinginnovativeproductsandservices.GraphicProcessingUnits(GPUs)and

Application-SpecificIntegratedCircuits(ASICs)arebeingadoptedforAItrainingandinference.

Nowadays,moreandmoregeneral-purposeCentralProcessingUnits(CPUs)cansupportAI

inferenceandtraining.Theintroductionofpre-traininglanguagemodelsallowsdevelopersto

buildcomplexapplications,suchasspeechrecognitionandmachinetranslation,withouttrainingamodelfromscratch.AutoMachineLearning(AutoML)providesmethods,tools,andtechniquestomakethedevelopmentprocesseasierfornon-AIexpertsbyautomatingAIworkflow.

Notsurprisingly,alltheseadvancementshaveledtoahugedemandforAIchipsets.AccordingtoABIResearch’sArtificialIntelligenceandMachineLearningmarketdata(MD-AIML-109),theglobalAIchipsetmarketisestimatedtobeUS$32.3billionin2022.ThisincludesthesalesofAItrainingandinferencechipsets,includingtheCPU,GPU,FieldProgrammableGatedArray(FPGA),NeuralProcessingUnit(NPU),AIaccelerator,microcontroller,andneuromorphicchipset,inalldata

centersandenddevices.Furthermore,thedemocratizationofAIwillleadtoAIbeingdeployedacrossawiderangeofphysicalsitesandcomputenodes.Asaresult,thismarketisexpectedtogrowtoUS$68.8billionin2027,withaCompoundAnnualGrowthRate(CAGR)of26%.

Chart1:TotalRevenuefromAIChipsetSales

WorldMarkets:2020to2027

(Source:ABIResearch)

35

AnnualRevenue(US$Billions)

30

25

20

15

10

5

0

CloudAIChipsetsEdgeAIChipset

6

20202021202220232024202520262027

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

KEYPRINCIPLESOFAIINFRASTRUCTUREINVESTMENT

Today’sAIisnarrowlyfocused,requiresawiderangeofexpertise,andexistsinasilo.Incontrast,theAIoftomorrowrequiresenormousamountsofresourcesanddeeptechnologicalknowledge,whichremainsoutofreachformostbusinesses.Therefore,businessesmuststartearly,identify

thebusinessoutcomesthatcannotbeeasilyachievedwithoutAI,activelybuildinternalcapabilities,androllouttheseadvancedAItechniqueswidelyacrosstheentireorganization.Insummary,

belowarefourkeypillarswhenconsideringAIinfrastructure:

?AIInfrastructureMustBeDrivenbyBusinessOutcomes:ThevisionofAIinfrastructuremustbebasedontheintendedbusinessoutcomeofAIdeployment.Businessesmustfirstunderstandtheshort-andlong-termvaluesAIbringstotheiroperationbeforedesigning

themostsuitableAImodels.WhenanAIprojecthasaclearbusinessoutcome,ithasactualfinancialvaluesthatseniormanagementcanrecognize.

?AIInfrastructureMustBeHeterogenousandFlexible:TounlocktheactualvalueofAI

andyieldmaximumbenefits,scale-upandscale-outofAIapplicationsarecritical.Building

anAIinfrastructurethatofferstheproperfoundationtosupportdifferentfacetsofAImodeldesign,development,anddeploymentacrossdifferentcomputingplatformsgoesalongwaytoprotectandfuture-proofcurrentinvestments.AheterogeneouscomputeplatformwillofferthebestperformanceacrossallAItasks.AIdeveloperscanusetheCPUfordatagatheringandpreparation,beforeswitchingtotheGPUandASICformodeltraining,andfinallyusingeithertheGPU,ASIC,orCPUforAIinferenceworkload.

?AIInfrastructureMustBeBackwardCompatible:AllAIinfrastructuremustbeableto

workwithexistingenterprisesolutions.Therefore,settingaversatile,robust,andinteroperablefoundationwithallexistingsolutionsisamust.Incompatibilityriskscreatingmanysilosinthebusinessoperation,leadingtopoorlyoptimizedIT/OTinfrastructureandprocesses.

?AIInfrastructureMustBeOpenandSecure:Businessesalwayswanttoavoidvendorlock-in.AnAIinfrastructureconsistingofopenhardwareandsoftwarethatcaninteroperatewithothersolutionsissignificantinensuringsmoothIT/OTprocesses.Atthesametime,opennessshouldnotleadtoacompromiseinsecurity.TheAIfoundationmustfeaturestate-of-the-artcybersecurityanddataprotectionmechanismstopreventhacking,protectuserdata,and

7

complywithlegalrequirements.

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

ItisclearthatAIisstillinitsinfancy,andbuildingtheproperfoundationforitiscriticalforits

futuresuccess.InsteadoflookingatAIfromtoday’slens,allbusinessesmusthaveaclearlong-termplan.Thisvisionwillhelpthemnavigatethechallengesandtechnologyrequirementsfor

AI,helpingthemmaketherightdecisionininvestinginthemostoptimalandfuture-proofAI

infrastructure.ThefollowingsectiondiscussesvariousapproachesbusinessescantaketodeployAI.Inaddition,ithighlightsthekeyfeaturesandcharacteristicsbusinessesmustpayattentiontowhenselectingtheirAItechnologies.

CHARACTERISTICSOFAFUTURE-PROOFEDAIINFRASTRUCTURE

EnablingAIbroadlyacrossenterprisesrequiresadifferentmindset.BusinessesmustunderstandthatbuildingAIforbusinessisacontinuousprocessinvolvingmanybuildingblocks.AsshowninFigure5,severalkeyrecentadvancementshaveallowedAItobecomeareality.

Figure4:KeyAITechnologyTrends

(Source:ABIResearch)

User-FriendlyOpen-SourceAITools

DataScienceand

AIDeveloperCommunity

IT/OTConvergence

GrowingAIEcosystem

AI

Democratizationof

ComputingResourcesDemocratizationof

EdgeAI

EmergenceofLargeMLModels

8

AllofthemhaveasignificantimpactonhowbusinessesshoulddeploytheirAI.

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

9

PREPARINGTHEFOUNDATIONFORTHEAIOFTOMORROW

Table2:KeyAITechnologyTrendsandTheirBusinessImplications

(Source:ABIResearch)

KeyTrends

Descriptions

BusinessImplications

IT/OT

convergence

ITandOThavetraditionallybeendevelopedseparately,withnoabilitytoexploitoperationsandproductiondatatomakemoreinformeddecisionsforoptimizedworkflowand

well-plannedproductionandmaintenanceprocesses.COVID-19hasspedupthedigitaltransformationprocessinmanybusinesses,leadingtoemergingtechnologies,suchastheInternetofThings(IoT)androboticsautomation.Asaresult,businessesalsostarttocollectmoreoperationaldatathatareveryusefulforplanning,optimization,andupgrades.

Thisconvergencewillenablebusinessestogaininsightandmakedata-drivendecisions.Theycanalsooptimizetheirexistingworkflowswithoutneedingtoscaleuprapidly.

Democratizationofcomputingresources

ThedemocratizationofcomputingresourcesforAIhasbeenachievedbythewideavailabilityofpubliccloudcomputing.Indeed,AIdevelopersmaywanttoleveragethecentralized

processingandstorageofferedbyCSPsinsteadofdeployingtheirownAIhardware,whichisnoteconomicalenough,mainlyforexecutingdenseAInetworks.Theuniformityand

scalabilityofCSPs’computeandstoragearchitectureenablethemtohandlecompute-intensiveDLmodelsonanon-demandbasis,significantlyloweringthebarrier-to-entryforAIdeveloperswithouttheabilitytobuildandmaintaintheirownAIinfrastructure.AsAImodelsarebecomingmorecomplex,theaccessprovidedbyCSPsisessentialforthedemocratizationofAI.

BusinessesmustinvestintherightAIinfrastructurebybuyingfromestablishedCSPsorbuildingtheirprivatecloudinfrastructure.Whilepubliccloud

solutionsarescalable,theycanbecostlywhen

comparedtobeingwell-plannedforprivate

infrastructurebasedonlong-termsgoals.Therefore,businessesshouldalsoconsiderleveragingthe

bestofbothworldswithhybridclouddeploymentstogetthebestprice-performanceadvantageandflexibility.

EmergenceoflargeDLmodels

Anotherprimaryreasonbehindthegaininaccuracyandperformanceisthegrowthin

DLmodels,preciselythenumberofparametersandhyperparameters.AImodelshave

scaledsignificantlyinthepastyears.Dependingontheapplication,largemodelsprovide

fundamentallyuniqueadvantages.Forexample,OpenAI’sGPT-3,widelyconsideredthemostadvancedNaturalLanguageProcessing(NLP)modelof2021,has125millionto175billionparametersandcanhandleadvancedapplications,suchasgenerativeemailsordocumentsummaries.NewermodelslikeBLOOMfromBigScience,whichhas176billionparameters,supportmultiplehumanlanguagesandprogramminglanguages.

BusinessesneedtoconsiderthecostofAItrainingandimplementation.Forcontext,thecloud

computingcostforthetrainingofBLOOM,whichisaround330Gigabytes(GB)insizeisestimatedtobeinthemulti-million-dollarrange.Asidefromtheproperhardwareinfrastructure,businessesmustalsoidentifythesuitableapplicationsandusecasestheywanttodeploy.

DemocratizationofedgeAI

HighlyoptimizedandminiaturizedAImodelsarecurrentlyembeddedinsmartsensors,

devices,andgateways.Thesecarefullycraftedsmallermodelscanalsoperformnarrowly-focusedapplications,specificallyinalways-oncomputervisionandtime-seriesdataanalysis.Solutionprovidershaveintroducedpower-efficientAIprocessors(ASIC,NPU,neuromorphicchipset),DLmodeloptimizationtechniques(knowledgedistillation,pruning,and

quantization),developer-friendlytoolsandservices,andmoreintelligentresourceallocation.

EdgeAIisawaytominimizelatency,privacyrisk,

andconnectivitycosts.Businessesmustlookintothelong-termbenefitsofedgeAIanddevelopastrategytodeployintheiroperation.

GrowingAIecosystem

TheAIecosystemcontinuestogrowatarapidrate.AIstartupsareofferingawiderangeofsolutions.Themostwell-knownstartupsworkonfacialrecognition,AdvancedDriver-AssistanceSystems(ADAS),andNLP.COVID-19hasbecomeacatalystbehindtherapidadoptionofAI-basedenterpriseautomation,suchasRPA,AI-aidedspeechrecognition,transcriptionandtranslation,andsalesandmarketingenablementtools.ThoselookingtobuildtheirowncustomAIwillleantowardstar

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論