下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁河北工業(yè)職業(yè)技術(shù)大學(xué)
《深度學(xué)習(xí)實(shí)踐應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在構(gòu)建一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和偏好為其推薦相關(guān)的產(chǎn)品或內(nèi)容。如果數(shù)據(jù)具有稀疏性和冷啟動(dòng)問題,以下哪種方法可以幫助改善推薦效果?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.混合推薦D.以上方法都可以嘗試2、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)3、想象一個(gè)圖像識別的任務(wù),需要對大量的圖片進(jìn)行分類,例如區(qū)分貓和狗的圖片。為了達(dá)到較好的識別效果,同時(shí)考慮計(jì)算資源和訓(xùn)練時(shí)間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如基于特征工程的支持向量機(jī),需要手動(dòng)設(shè)計(jì)特征,但計(jì)算量相對較小B.采用淺層的神經(jīng)網(wǎng)絡(luò),如只有一到兩個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),訓(xùn)練速度較快,但可能無法捕捉復(fù)雜的圖像特征C.運(yùn)用深度卷積神經(jīng)網(wǎng)絡(luò),如ResNet架構(gòu),能夠自動(dòng)學(xué)習(xí)特征,識別效果好,但計(jì)算資源需求大,訓(xùn)練時(shí)間長D.利用遷移學(xué)習(xí),將在大規(guī)模圖像數(shù)據(jù)集上預(yù)訓(xùn)練好的模型,如Inception模型,微調(diào)應(yīng)用到當(dāng)前任務(wù),節(jié)省訓(xùn)練時(shí)間和計(jì)算資源4、在進(jìn)行聚類分析時(shí),有多種聚類算法可供選擇。假設(shè)我們要對一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個(gè)數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響5、在機(jī)器學(xué)習(xí)中,交叉驗(yàn)證是一種常用的評估模型性能和選擇超參數(shù)的方法。假設(shè)我們正在使用K折交叉驗(yàn)證來評估一個(gè)分類模型。以下關(guān)于交叉驗(yàn)證的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.將數(shù)據(jù)集隨機(jī)分成K個(gè)大小相等的子集,依次選擇其中一個(gè)子集作為測試集,其余子集作為訓(xùn)練集B.通過計(jì)算K次實(shí)驗(yàn)的平均準(zhǔn)確率等指標(biāo)來評估模型的性能C.可以在交叉驗(yàn)證過程中同時(shí)調(diào)整多個(gè)超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗(yàn)證只適用于小數(shù)據(jù)集,對于大數(shù)據(jù)集計(jì)算成本過高,不適用6、在監(jiān)督學(xué)習(xí)中,常見的算法有線性回歸、邏輯回歸、支持向量機(jī)等。以下關(guān)于監(jiān)督學(xué)習(xí)算法的說法中,錯(cuò)誤的是:線性回歸用于預(yù)測連續(xù)值,邏輯回歸用于分類任務(wù)。支持向量機(jī)通過尋找一個(gè)最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學(xué)習(xí)算法的說法錯(cuò)誤的是()A.線性回歸的模型簡單,容易理解,但對于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機(jī)在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計(jì)算成本較高D.監(jiān)督學(xué)習(xí)算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無關(guān)7、假設(shè)正在開發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法8、機(jī)器學(xué)習(xí)是一門涉及統(tǒng)計(jì)學(xué)、計(jì)算機(jī)科學(xué)和人工智能的交叉學(xué)科。它的目標(biāo)是讓計(jì)算機(jī)從數(shù)據(jù)中自動(dòng)學(xué)習(xí)規(guī)律和模式,從而能夠進(jìn)行預(yù)測、分類、聚類等任務(wù)。以下關(guān)于機(jī)器學(xué)習(xí)的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三大類。監(jiān)督學(xué)習(xí)需要有標(biāo)注的訓(xùn)練數(shù)據(jù),無監(jiān)督學(xué)習(xí)則不需要標(biāo)注數(shù)據(jù)。那么,下列關(guān)于機(jī)器學(xué)習(xí)的說法錯(cuò)誤的是()A.決策樹是一種監(jiān)督學(xué)習(xí)算法,可以用于分類和回歸任務(wù)B.K均值聚類是一種無監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)分成K個(gè)聚類C.強(qiáng)化學(xué)習(xí)通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略,適用于機(jī)器人控制等領(lǐng)域D.機(jī)器學(xué)習(xí)算法的性能只取決于算法本身,與數(shù)據(jù)的質(zhì)量和數(shù)量無關(guān)9、在進(jìn)行機(jī)器學(xué)習(xí)模型評估時(shí),除了準(zhǔn)確性等常見指標(biāo)外,還可以使用混淆矩陣來更詳細(xì)地分析模型的性能。對于一個(gè)二分類問題,混淆矩陣包含了真陽性(TP)、真陰性(TN)、假陽性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過混淆矩陣計(jì)算得到,并且對于不平衡數(shù)據(jù)集的評估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)10、在一個(gè)氣候預(yù)測的研究中,需要根據(jù)歷史的氣象數(shù)據(jù),包括溫度、濕度、氣壓等,來預(yù)測未來一段時(shí)間的天氣狀況。數(shù)據(jù)具有季節(jié)性、周期性和長期趨勢等特征。以下哪種預(yù)測方法可能是最有效的?()A.簡單的線性時(shí)間序列模型,如自回歸移動(dòng)平均(ARMA)模型,適用于平穩(wěn)數(shù)據(jù),但對復(fù)雜模式的捕捉能力有限B.季節(jié)性自回歸整合移動(dòng)平均(SARIMA)模型,考慮了季節(jié)性因素,但對于非線性和突變的情況處理能力不足C.基于深度學(xué)習(xí)的長短期記憶網(wǎng)絡(luò)(LSTM)與門控循環(huán)單元(GRU),能夠處理長序列和復(fù)雜的非線性關(guān)系,但需要大量數(shù)據(jù)和計(jì)算資源D.結(jié)合多種傳統(tǒng)時(shí)間序列模型和機(jī)器學(xué)習(xí)算法的集成方法,綜合各自的優(yōu)勢,但模型復(fù)雜度和調(diào)參難度較高11、無監(jiān)督學(xué)習(xí)算法主要包括聚類和降維等方法。以下關(guān)于無監(jiān)督學(xué)習(xí)算法的說法中,錯(cuò)誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無監(jiān)督學(xué)習(xí)算法的說法錯(cuò)誤的是()A.K均值聚類算法需要預(yù)先指定聚類的個(gè)數(shù)K,并且對初始值比較敏感B.層次聚類算法可以生成樹形結(jié)構(gòu)的聚類結(jié)果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學(xué)習(xí)算法不需要任何先驗(yàn)知識,完全由數(shù)據(jù)本身驅(qū)動(dòng)12、在評估機(jī)器學(xué)習(xí)模型的性能時(shí),通常會(huì)使用多種指標(biāo)。假設(shè)我們有一個(gè)二分類模型,用于預(yù)測患者是否患有某種疾病。以下關(guān)于模型評估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率是被正確預(yù)測為正例的樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.F1分?jǐn)?shù)是準(zhǔn)確率和召回率的調(diào)和平均值,綜合考慮了模型的準(zhǔn)確性和全面性D.均方誤差(MSE)常用于二分類問題的模型評估,值越小表示模型性能越好13、機(jī)器學(xué)習(xí)在自然語言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語言處理中的說法錯(cuò)誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結(jié)構(gòu)B.TF-IDF可以衡量一個(gè)詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源D.機(jī)器學(xué)習(xí)在自然語言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展14、假設(shè)正在構(gòu)建一個(gè)語音識別系統(tǒng),需要對輸入的語音信號進(jìn)行預(yù)處理和特征提取。語音信號具有時(shí)變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對語音信號進(jìn)行分幀和加窗C.將語音信號轉(zhuǎn)換為頻域表示D.對語音信號進(jìn)行壓縮編碼,減少數(shù)據(jù)量15、某機(jī)器學(xué)習(xí)項(xiàng)目需要對大量的圖像進(jìn)行分類,但是計(jì)算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計(jì)算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮16、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識別等領(lǐng)域。假設(shè)我們正在設(shè)計(jì)一個(gè)CNN模型,對于圖像分類任務(wù),以下哪個(gè)因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大17、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個(gè)問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效18、在一個(gè)異常檢測問題中,例如檢測網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠(yuǎn)遠(yuǎn)多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會(huì)因?yàn)閿?shù)據(jù)不平衡而導(dǎo)致模型對異常樣本的檢測能力不足。以下哪種方法更適合解決這類異常檢測問題?()A.構(gòu)建一個(gè)二分類模型,將數(shù)據(jù)分為正常和異常兩類B.使用無監(jiān)督學(xué)習(xí)算法,如基于密度的聚類算法,識別異常點(diǎn)C.對數(shù)據(jù)進(jìn)行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測問題無法通過機(jī)器學(xué)習(xí)解決19、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎(jiǎng)勵(lì)或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計(jì)狀態(tài)-動(dòng)作值來選擇最優(yōu)動(dòng)作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計(jì)算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動(dòng)作就能找到最優(yōu)策略20、假設(shè)正在進(jìn)行一個(gè)異常檢測任務(wù),例如檢測網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法21、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,通過投票來決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過程中對特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹22、對于一個(gè)高維度的數(shù)據(jù),在進(jìn)行特征選擇時(shí),以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以23、在進(jìn)行特征選擇時(shí),有多種方法可以評估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過計(jì)算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評估特征的重要性C.隨機(jī)森林中的特征重要性評估是基于特征對模型性能的貢獻(xiàn)程度D.所有的特征重要性評估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證24、在自然語言處理任務(wù)中,如文本分類,詞向量表示是基礎(chǔ)。常見的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個(gè)大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時(shí)考慮到計(jì)算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項(xiàng)是不準(zhǔn)確的?()A.Word2Vec可以通過CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計(jì)信息,能夠捕捉更全局的語義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)25、在一個(gè)客戶流失預(yù)測的問題中,需要根據(jù)客戶的消費(fèi)行為、服務(wù)使用情況等數(shù)據(jù)來提前預(yù)測哪些客戶可能會(huì)流失。以下哪種特征工程方法可能是最有幫助的?()A.手動(dòng)選擇和構(gòu)建與客戶流失相關(guān)的特征,如消費(fèi)頻率、消費(fèi)金額的變化等,但可能忽略一些潛在的重要特征B.利用自動(dòng)特征選擇算法,如基于相關(guān)性或基于樹模型的特征重要性評估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點(diǎn)和模型需求26、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個(gè)城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計(jì)算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化27、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)語音識別系統(tǒng),需要對語音信號進(jìn)行特征提取。以下哪種特征在語音識別中被廣泛使用?()A.梅爾頻率倒譜系數(shù)(MFCC)B.線性預(yù)測編碼(LPC)C.感知線性預(yù)測(PLP)D.以上特征都常用28、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝?yàn)證技術(shù)來評估不同模型和超參數(shù)組合的性能。假設(shè)有一個(gè)分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評估準(zhǔn)確性B.K=2,快速得到初步的評估結(jié)果C.K=10,提供更可靠的評估D.K=n(n為樣本數(shù)量),確保每個(gè)樣本都用于驗(yàn)證一次29、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時(shí),以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過直接計(jì)算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇30、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對疾病進(jìn)行預(yù)測。由于醫(yī)療數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年車位使用權(quán)的抵押合同
- 2024年長途貨車司機(jī)雇傭協(xié)議
- 2024跨境電商平臺(tái)搭建與運(yùn)營合同
- 2024年離婚雙方權(quán)益確認(rèn)書
- 2024年通訊設(shè)備購銷范本3篇
- 2024跟裝修公司簽合同范本
- 2024年版房屋建筑工程補(bǔ)充協(xié)議樣本版B版
- 2024版商業(yè)地產(chǎn)項(xiàng)目居間服務(wù)合同
- 2025年度殯儀館遺體火化及骨灰安置綜合服務(wù)合同3篇
- 出入院管理制度
- 教科版三年級上冊科學(xué)教案(全冊)
- 勞動(dòng)力安排計(jì)劃及勞動(dòng)力計(jì)劃表(樣板)
- 利潤表4(通用模板)
- 教育評價(jià)學(xué)全套ppt課件完整版教學(xué)教程
- 注塑領(lǐng)班作業(yè)指導(dǎo)書
- ASTM B330-20 Standard Test Methods for Estimating Average Particle Size of Metal Powders and Related Compounds Using%2
- 顧客忠誠度論文
- 血?dú)夥治黾芭R床應(yīng)用
- 浙江省市政工程安全臺(tái)賬完整
- 歐洲城市廣場歷史演變
- 個(gè)人信用報(bào)告異議申請表
評論
0/150
提交評論