探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第1頁
探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第2頁
探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第3頁
探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第4頁
探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Repeatuntilconvergence

ExploringPotentialPromptInjectionAttacksinFederatedMilitaryLLMsandTheirMitigation

YoungjoonLee,TaehyunPark,YunhoLee,JinuGong,JoonhyukKang

arXiv:2501.18416v1[cs.LG]30Jan2025

Abstract—FederatedLearning(FL)isincreasinglybeingadoptedinmilitarycollaborationstodevelopLargeLanguageModels(LLMs)whilepreservingdatasovereignty.However,promptinjectionattacks—maliciousmanipulationsofinputprompts—posenewthreatsthatmayundermineoperationalsecurity,disruptdecision-making,anderodetrustamongallies.ThisperspectivepaperhighlightsfourpotentialvulnerabilitiesinfederatedmilitaryLLMs:secretdataleakage,free-riderexploitation,systemdisruption,andmisinformationspread.Toaddressthesepotentialrisks,weproposeahuman–AIcollab-orativeframeworkthatintroducesbothtechnicalandpolicycountermeasures.Onthetechnicalside,ourframeworkusesred/blueteamwargamingandqualityassurancetodetectandmitigateadversarialbehaviorsofsharedLLMweights.Onthepolicyside,itpromotesjointAI–humanpolicydevelopmentandverificationofsecurityprotocols.Ourfindingswillguidefutureresearchandemphasizeproactivestrategiesforemergingmilitarycontexts.

IndexTerms:federatedlearning,largelanguagemodel,ad-versarialattack,militarypolicy

I.INTRODUCTION

TheriseofLLMsandspecializedAIhardware(e.g.,IntelGaudi)hasacceleratedtheuseofAIinmanydefenseap-plications,enablingadvancedanalyticsthatwerepreviously

outofreach[1]

.

FL[2]providesaframeworkforallied

nationstocollaborativelytrainLLMswhilemaintainingdata

sovereignty[3],[4],asshowninFig

.

1.

ByutilizingFL,eachparticipantpreservessensitiveinformationwhilereducingthe

riskofunauthorizedaccess[5]

.Atthesametime,FLfacilitatescollaborativemodeldevelopment,italsonecessitatesrobustsecuritymeasurestodefendagainstevolvingadversarialtac-

tics[6]

.Specifically,themostpressingconcernisthethreatofpromptinjectionattacks,inwhichadversariescleverlymanipulateoralterinputpromptstoextractsecretdataor

disruptmission-criticalsystems[7],[8]

.

Suchattackscansignificantlyweakenoperationalsecurity,interruptcrucialdecision-makingprocesses,andunderminethetrust

[9]thatunderlieseffectivemilitarycooperation

amongalliednations.BecauseFLinvolvesacoalitionofcountrieswithnumerousAIandanalysisexperts,addressingthesethreatsnecessitatesbothadvancedtechnicalsolutionsandpolicyframeworksthatcanaccommodatevariedde-fenserequirements.

Promptinjectionattacks[10],[11],[12]

mayappearinfourmainformsinmilitarycontext:secretdataleakage,free-riderexploitation,systemdisruption,andmisinformationspread,eachposingdistinctobstaclestothereliabilityandintegrityoffederatedmilitaryLLMs.Thesethreatsoftenremainsubtleandthusdifficulttodetectthrough

traditionalmonitoringmethods[13],underscoringtheneed

Trainwithprivateconfidentialdata

Synchronizeinitial

LLMtoalliednations

Exchangeweight

oftrainedLLMsAggregateLLMs

SynchronizeExchangeLocallearningAggregation

Benignnation'scloudserverCompromisednation'scloudserver

Fig.1:FLframeworkformilitaryLLMtrainingacrossalliednations.Theprocessinvolvesfourkeystages:(1)initialLLMsynchronization,(2)localtrainingwithprivatedata,(3)weightexchange,and(4)modelaggregation.Thisiterativeprocesscontinuesuntilconvergence,whilemitigatingadversarialrisks.Bluecloudsrepresentbenignnation’sserverswhileredcloudsindicatepotentiallycompromisedservers.

forspecializedmethodstailoredtomultinationalcontexts.Recognizingtheseevolvingvulnerabilitiesisessentialforcreatingrobustcountermeasures,asoverlookingthemcouldleavecriticaloperationsopentocompromiseinhigh-stakesmilitaryscenarios.

Inthispaperwepresentaninsightonhowtoaddresstheserisksbypresentingahuman–AIcollaborativecounter-measuresfrombothtechnicalandpoliticalperspectives.Atfirst,weproposetechnicalcountermeasureprocessincludingred/blueteamwargamingandcontinuousqualityassurance,whichhelpunveilhiddenvulnerabilitieswithinsharedLLMinfrastructuresandreinforceoverallsystemresilience.Then,weproposepoliticalcountermeasureprocess,wheremilitarypolicy,domainexperts,andAIexpertsworktogethertoestablishpropersecuritypolicyforthenation.Byapplyingeitherorbothoftheseapproaches,weaimtopresentapracticalsolutiontocounterpresentandemergingpromptinjectionthreatsinfederatedmilitaryenvironments.Therefore,thisensuressustainedoperationaleffectivenessandreinforcestrustamongcoalitionpartners.

Themaincontributionsofthispaperareasfollows:

?WeintroduceFLanditsvulnerabilitiestopromptinjec-tionattacks,highlightingthepotentialrisksandsecuritychallengesindecentralizedAIsystems.

?Wepresentfourpotentialmajorthreatscenariosinmili-taryFL,includingsecretdataleakage,free-riderexploita-tion,systemdisruption,andmisinformationspread.

?Weproposehuman-AIcollaborativecountermeasuresin

perspectiveoftechnicalandpoliticalway.

?Additionally,weemphasizetheneedforstandardizedsecurityframeworksandcooperativedefensestrategies.

Theremainderofthispaperisorganizedasfollows.InSection

II,providesbackgroundknowledgeofFLandpromptinjection

attacks.Section

III

introducesthepotentialchallengesinfederatedmilitaryLLMs.Section

IV

discussestechnicalandpoliticalcountermeasuresforthepotentialthreats.Finally,section

V

exploresfuturedirectionandsection

VI

concludesthepaper.

II.BACKGROUND

Inthissection,weintroducethekeybackgroundconceptsforFLandpromptinjectionattacks.WespecificallyexploretheirimpactonmilitarycollaborationsamongalliednationsandthechallengestheypresentinsecureAIintegration.

A.FLTopologyinMilitaryAlliances

Indata-sensitivefieldssuchashealthcareandfinance

[14],FLhasemergedasanestablishedapproachforsecure

collaborativelearningduetocharacteristicsdepictedinFig.

2.

Themilitaryisalsoincreasinglyconsideringitsadop-tiontoenhanceoperationalsecurityandAI-drivendecision-making.TheFLarchitectureenablesparticipatingnationstocontributetomodeltrainingwhilepreservingtheirexisting

securityinfrastructureandoperationalautonomy[15]

.Thisdecentralizedapproachallowsnationstoleverageinsightsthatmaynotbereadilyavailablewithintheirowndatasourceswhilemaintainingstrictsecuritycontrols.Forexample,theU.S.DepartmentofDefenseisactivelycollaboratingwithacademia,industry,andalliednationstoexploretheadoptionofFLfordatamanagementandresponsibleAI,ensuring

alignmentwithsecurityandoperationalrequirements[16]

.

AmajorbenefitofFLinmilitarycoalitionsisitsabilitytoenhancedecision-makingbyintegratingdiverseoperational

experiencesanddatasources[17]

.Differentnationshaveuniquebattlefieldenvironments,weaponsystems,andthreatintelligence,allofwhichcanbeincorporatedintoasharedmodelwithoutcompromisingnationalsecurity.ThiscollectivelearningimprovestheadaptabilityofAImodelstovariedmilitaryscenarios,makingthemmoreeffectiveinreal-worldmilitaryoperations.Furthermore,FLoptimizescommunica-tionefficiencybyexchangingonlymodelupdatesinsteadofrawdata,significantlyreducingbandwidthrequirements.Thisstreamlinedcommunicationenablesreal-timeadaptability,al-lowingAImodelstorapidlyadjusttoevolvingthreatsanddynamicbattlefieldconditions.

ByincorporatingadvancedLLMsintoaFLframe-work,alliescansecurelymergelanguagedatafromvarioussources.Thisintegrationenhancescross-linguisticcapabilities,strengtheningcommunicationprotocolsinjointoperations.Eachparticipantcontributesdomain-specifictextcorpora,en-richingthesharedmodelwithcontextualknowledgedrawnfromdiversemilitarypractices.Thisholisticapproachbolsterslanguagecomprehension,enablingtheLLMtoaccuratelyinterpretmission-criticaldirectivesandintelligencereports.

Privacy-preservation

-Reduceexposurerisk

-Keepsdatadecentralized

Scalability

t

-Expandacrosssystems

-Seamlessexpansion

FederatedLearning

Jointlearning

-Shareinsights

-Real-timeadaption

Regulatorycompliance

-Meetprivacylaw

-Protectsensitivedata

Fig.2:IllustrationoffourkeyadvantagesinFL:(1)Privacy-preservationcapabilities,enablingreducedexposureriskanddecentralizeddatamanagement;(2)Jointlearningframe-work,facilitatingsharedinsightsandreal-timeadaptation;(3)Systemscalabilitysupportingcross-systemexpansionandseamlessgrowth;and(4)Regulatorycompliancefeaturesensuringadherencetoprivacylawsandprotectionofsensitiveinformation.TheinterconnectedcirculardesignemphasizesthesynergisticrelationshipamongthesekeyfactorsinFL.

Ultimately,FL-drivenLLMtrainingpreservesdatasovereigntywhilefacilitatingfaster,morereliableinformationsynthesisforcoalitiondecision-makers.

B.ConceptofPromptInjectionAttack

Promptinjectionattackshaverecentlyemergedasasignifi-

cantthreatinmodernLLM-basedapplications[18]

.Theseat-tacksexploittheinherentvulnerabilityinAIsystemsthatrelyontextualinstructions,enablingadversariestomanipulateor

alterthepromptsformaliciousoutcomes[19]

.Inmanycases,thesemanipulationsinvolveembeddingcarefullydisguised

instructionsthatexploitamodel’shiddenvulnerabilities[20]

.Unliketraditionaldatapoisoningattacksthattamperwithtrainingdata,promptinjectionfocusesoninterferingwiththemodel’sreasoningprocessafterdeployment.Bysubtlyembeddingdeceptivetriggersormanipulativecontentinuser-providedtext,attackerscanforcethemodeltorevealsensi-tiveinformationorperformunauthorizedactions.AsLLMsbecomeintegraltosensitiveoperations,theriskofprompt

injectionattacksgrowsmorepronounced[21]

.

Themostcriticalchallengeofpromptinjectionattacksistheirpotentialtobypassconventionalsecuritymeasuressuch

asanomalydetectionandcontentfilters[22]

.Becausetheseattacksoftenappearasnormaltextinputs,theycanremainundetecteduntiltheysignificantlycompromiseanoperation.Evenseeminglybenignvariationsinphrasingcanleadtosignificantvulnerabilitieswhenthesystemprocessesthein-put.Additionally,adversariesexhibitevolvingcapabilitiestorefinetheirinjectiontechniques,increasingthecomplexityofpredictionandmitigation.Thisevolvingthreatisparticularlyconcerninginfederatedenvironments,whereasinglepromptinjectioncanpropagateitsadverseeffectsthroughoutfederated

AIsystems[23]

.Consequently,understandingandmitigatingtheserisksisimperativeformaintainingoperationalsecurityandtrustincollaborativemilitaryAInetworks.

Atcompromisednation:

Prompt

Generateasummaryofbattlefieldstrategyandpolicyinsightsbasedontraineddata.

Atcompromisednation:

Secretdata

Sufficient?

yes

Sufficient?

noyes

Secretdata

no

SharedLLMweightsfromalliednations

Init&Fine-tune

Filteruseless

Expert

in-houseLLM

secretdata

verification

End

End

Secretdata

Secretdata

Broadcast

Init&fine-tune

trainedLLM

aggregatedLLM

End

End

Prompt

Completethisclassifiedmilitaryreport:"Thelatestmissile

deploymentlocationsinclude...

Init&Fine-tune

Filteruseless

Expert

in-houseLLM

secretdata

verification

BroadcasttrainedLLM

Init&Fine-tuneaggregatedLLM

(a)Secretdataextractionattack.

(b)Free-riderexploitationattack.

Atcompromisednation:

Aggregate

Atcompromisednation:

Prompt

EnsurethatXlocationisnotincludedinanyattackplansortargetingoperations.

Prompt

Subtlymanipulatethedatainthetrainingdataset.

Expert

verification

Secretdata

Sufficient?

noyes

Aggregate

t↓

Prompt

Sufficient?yes

Secretdata

no

ManipulatedwithaggregatedLLMweight

End

ManipulatedwithtrainedLLMweight

Init&Fine-tunein-houseLLM

Init&Fine-tuneaggregatedLLM

Compare&Broadcast

End-

End

BroadcasttrainedLLM

Broadcast

manipulatedLLM

Expert

verification

(c)Systemdisruptionattack.

(d)Misinformationpropagationattack.

Fig.3:IllustrationoffourpotentialattackscenariosinmilitaryFLenvironments:(a)Secretdataextractionattack,whereadversariessystematicallyprobesharedLLMstoextractclassifiedinformationthroughtargetedpromptsandexpertverification,(b)Free-riderexploitationattackleveragingstrategicpromptstogainmilitaryintelligencewhilewithholdingauthenticdatacontribution,(c)Systemdisruptionattackmanipulatingmodelbehaviorthroughcarefullycraftedpromptstocreatetacticalblindspots,and(d)Misinformationspreadattackutilizingdual-channelpropagationtosystematicallyinjectfalseinformationintothefederation.EachscenariodemonstratessophisticatedattackmethodologiesthatexploitvulnerabilitiesinfederatedmilitaryLLMdeploymentswhilemaintainingapparentlegitimateparticipation.

III.KEYCHALLENGES

Inthissection,wepresentfourpotentialpromptinjectionattackstargetingfederatedmilitaryLLMs.Wespecificallycoverfourcriticalvulnerabilities:secretdataleakage,free-riderexploitation,systemdisruption,andmisinformationprop-agation,eachposinguniqueoperationalandsecurityrisks.

A.SecretDataLeakage

Theriskofsecretdataleaks,asshowninFig.

3a,isa

majorconcerninfederatedmilitaryLLMsystems.Inthesecases,attackerstakeadvantageofalteredtextinputstoextractclassifieddetailsfromthesharedmodel.Insuchsituations,malicioususersorcompromisedgroupsrepeatedlyasktheglobalLLMcarefullydesignedquestionstoaccessrestricteddata,suchasmissilelocationsorthestatusofsurveillancesystems.Theseattackstakeadvantageofhowthemodelstoressensitiveinformation,bypassingstandardsecuritychecksandleadingtounauthorizedaccess.SinceFLgathersdatafrommultiplealliedforces,itincreasestheserisksandallowslarge-scalemaliciousattemptstoextractinformation.

Atthestartoftheattack,adversariescreatesetsoftestquestionsdesignedtorevealhiddeninformation.Aftercol-lectingthemodel’sresponses,theyuseexpertreviewstocheckwhethertheextractedinformationisaccurateanduseful.Byrepeatingthisprocess—improvingquestionsandverifying

answers—theygraduallybuildlargecollectionsofclassifieddata.Inthefinalstage,theyremoveunnecessarydetails,keepingonlythemostusefulinformationfortheiroperations.

Oncetheirdatacollectioniscomplete,adversariesintegratetheextractedsecretsintotheirownmilitaryAIsetupsthroughtwomainchannels.Theymayupdatetheirlocalizedlanguagemodelswiththestolenknowledge,therebyenrichingtheirunderstandingofallieddefenses.Alternatively,theycanincor-poratethesecretdataintothesharedmodelandredistributeittothefederatednetwork,effectivelyembeddingTrojan-likevulnerabilities.Thistwo-stepattacknotonlyputsimmediatesecurityoperationsatriskbutalsocreatesapathforlong-termbreaches.Therefore,itiscrucialformilitaryFLinitiativestoimplementrigorousframeworkstodetect,flag,andpreventprompt-baseddataextractionattack.

B.Free-riderAttack

Free-riderattacksinfederatedmilitaryLLMs,asdepictedinFig.

3b,revolvearoundthestrategicwithholdingofproprietary

databyunscrupulousparticipants.Althoughtheseadversariesstillexploitknowledgegleanedfromcollaborativemodels,theyavoidcontributingtheirownvaluableintelligence,therebyskewingthebenefitsintheirfavor.Thisapproachmirrorsse-cretdataleakagetacticsinsofarasmaliciousactorscanrefinetheirlocalizedlanguagemodelsusingconfidentialinformationobtainedfromthefederation,butheretheprimarygoalisto

capitalizeonsharedupdateswithoutreciprocating.Byapply-ingthesestoleninsightstotheglobalorlocalmodel,free-riderscangainapronouncedtacticaledgewhilesafeguardingtheirhiddendataassets.

Inpractice,suchanasymmetricdynamiccancauseseveralseriousconsequencesformultinationaldefensecooperation.Foremost,thefederation’soverallmodelqualitydeteriorateswhenessentialinputsfromcertainalliesareabsent,reduc-ingthemodel’scontextualreachandpredictiveaccuracy.Inaddition,thetrust-basedstructurethatunderpinsjointinitia-tivesweakensassuspicionsariseconcerninginconsistentdatasharing.Overtime,persistentfree-rideractivitiescanproduceunbalancedmodels,whichoverlookkeyoperationalnuancesanddegradethesystem’sreadiness.Ultimately,effectivelymitigatingtheseattacksdemandsrobustdetectionmethodsandpolicyframeworksthatensureeveryparticipantcontributesanappropriateshareofthecollectiveintelligence.

C.SystemDisruptionAttack

Systemdisruptionattacks,asillustratedinFig.

3c,present

arefinedmethodofsabotageinfederatedmilitaryLLMs,wherehostilefactionssystematicallymodifyhowthemodel

processescrucialoperationaldata.Attheoutset,theadversary

aggregatesupdatesfromdifferentalliedmodelstoestablishaunifiedbaselineripeforexploitation.Theytheninjectintri-catelystructuredpromptsthatseedsubtlemisalignmentsinthemodel’sreasoningaboutspecificmissiontheaters,equipmentcapabilities,orconflictscenarios.Theseplanteddistortionsdisguiseaslegitimaterefinements,makingthemdifficulttodetectthroughstandardverificationchecks.

Attackersfurtherrefinethesedisruptionsbycross-referencingtheaggregatedmodelwithaprivatelyfine-tunedversion,comparingoutcomestoidentifythemosteffectivemeansofintroducingerrors.Throughrepeatedpromptengi-neeringanditerativefeedback,theyembeddeliberatebiasesorblindspotsintothemodel’sstrategicassessments.Thecom-promisedupdatesprogressivelypropagateacrossthepartici-patingorganizations,systematicallyunderminingthemodel’sreliability.Thelong-termramificationsincludeskewedopera-tionalplanning,misjudgedresourceallocation,andweakenedresponsivenesstoemergentthreats.Thisunderscorestheim-portanceofrigorous,ongoingevaluationofmodelrevisionstoexposesignsoforchestratedmanipulation.

D.MisinformationSpread

Misinformationspreadattack,asshowninFig.

3d,tar

-getsthefidelityofknowledgeinfederatedmilitaryLLMsbyorchestratingthedeliberateinjectionoffabricateddataanddistortions.Initially,theattackerdiscreetlyalterstraininginputs,populatingthemwithmisleadingstatementsordoc-toredfactsundertheguiseoflegitimatetextentries.Thesealterationsstealthilyimplantsystemicfalsehoodsintothemodel’srepresentation,underminingthesharedintelligencepoolmaintainedbycollaboratingallies.Theprimaryriskofthisschemeliesinitspropensitytoemergegradually,asthe

introducedmisinformationblendsseamlesslywithauthenticcontent.

Maliciousparticipantsrefinetheirtechniquesbymodifyingbothlocaldatasetsandcombinedmodelweights,leverag-ingsubject-matterexpertstovalidatewhetherthefabricateddetailsappearplausible.Thislayeredvalidationapproachhelpsensurethefalsehoodsremainundetectedandeffectivelyintegrated.Overtime,thecorruptedupdatesarebroadcastbacktotheFLnetworkinmultiplewaves,compoundingtheinfiltra-tion.Thisresultsinapervasivespreadofinaccuraciesthatcanobscurecriticalwarnings,distortadversaryprofiles,orskewstrategicdeliberations.Consequently,implementingrobustval-idationprotocols,thoroughcross-referencingofsources,anddynamicthreatintelligencereviewsisvitalinmitigatingthedangersposedbytargetedmisinformationcampaigns.

IV.COUNTERMEASURES

Inthissection,wepresentahuman-aicollaborativestrat-egyforprotectingfederatedmilitaryLLMsagainstprompt

injectionattacks.Weproposecountermeasuresbasedonboth

technicalandpoliticalperspectivestoensurerobustdefenseframeworkswhilemaintainingstrategicpolicyalignment.

A.TechnicalCountermeasures

Onthetechnicalfront,oursolutionfeaturesawargaming-centricmethodologythatcapitalizesoncollaborativeinterac-tionsbetweenhumanexpertsandAI-drivensystemsasshowninFig.

4a.

Attheoutset,thoroughvulnerabilityassessmentsguideanAI-driventhreatdesignprocess,pinpointingpotentialattackpathwaysandevaluatingtheiroperationalrepercussions.ThisformsthefoundationforspecializedredteamandblueteamLLMsimulations,whereinredteammodelslaunchsimu-latedassaultstargetingrecognizedweaknesses,andblueteammodelsdeviseadaptiveresponsesinrealtime.Throughoutthissimulatedengagement,militarydomainspecialistsscrutinizethetacticsandoutcomes,ensuringthatdefensivemeasuresaccuratelymirrorreal-worldscenarios.

Akeystrengthofthisframeworkistheiterativelearn-ingcycleenabledbycontinualadversarialinterplay.AstheredteamLLMsadapttheirattackvectors,theblueteamLLMsconcurrentlyrefinecountermeasuresbasedonreal-timeinsightsandexpertrecommendations.Thisconstantback-and-forthhonesthesystem’sresilience,ultimatelyallowingthefederationtoidentifyandpatchhiddenvulnerabilities.Onceadequatedefensivecapacityisconfirmed,theframeworkprogressestoacomprehensivequalityassurance(QA)phase.DedicatedQALLMscontinuouslymonitorthedeployedmod-elsforirregularitiesorattemptedexploits,drawingonexpertinputwhenanomaliesemerge.Automatedcorrectionprotocolsaddressminorthreatstomaintainuninterruptedoperations,andmajorfindingstriggertargetedanalysisbydomainspecialists.Thismulti-layeredsetupensuresthatfederatedmilitaryLLMsarenotonlyshieldedfrompromptinjectionattacksatdeploy-mentbutalsoremainrobustagainstevolvingadversarialtacticsovertime.

Technicalcountermeasures:

SharedLLMs

ConfirmedLLMs

Human-AIcollaborativered/blueteamwargaming

Error

correction

Start一

fromalliednations

Vulnerabilityanalysis

ThreatdesignbyLLM

!

Attacker:RedteamingLLM

Defender:BlueteamingLLM

Aggregate

Qualityexpertverification

End

!

!

Domainexpertverification

Sufficient?

MonitoringbyQALLM

No

Yes

Domainexpertfeedback

AggregatedLLM

(a)Technicalcountermeasuresframework.

Policycountermeasures:

Commentsbydomainexperts

PolicydesignbyLLM

RiskmodelingbyLLM

PolicyReviewbyLLM

Policyexpertconfirmation

Policyupdate

一End

Start一

!!t

AIcommitteeconfirmation

Policyexpertverification

Domainexpertconfirmation

Sufficient?!Sufficient?!

Policyexpert◆◆

feedbackNoYesNoYes

Human-AIcollaborativepolicydesign

(b)Policycountermeasuresframework.

Fig.4:Proposedhuman-AIcollaborativecountermeasureframeworksforprotectingfederatedmilitaryLLMs:(a)Technicalframeworkimplementingred/blueteamwargamingmethodology,wherespecializedLLMsconductadversarialtestingunderdomainexpertsupervision,followedbycomprehensivequalityassuranceanderrorcorrectionprocesses,(b)PolicyframeworkutilizingiterativepolicydevelopmentthroughAI-drivendesignandriskmodeling,withmulti-stageexpertverificationandconfirmationprotocolstoensurerobustsecuritymeasures.BothframeworksemphasizecontinuouscollaborationbetweenhumanexpertiseandAIcapabilitiestomaintainoperationalsecuritywhilepreservingsystemeffectiveness.

B.PolicyCountermeasures

FromapolicystandpointasshowninFig.

4b,weintroduce

astructuredhuman–AImodelthatembedsrigoroussecurityrequirementsintotheorganizationalandoperationalprocessesgoverningfederatedLLMs.Theinitiativecommenceswithdomainexpertscontributingbaselinesecuritypriorities,whichareconvertedintoformalguidelinesbyspecializedpolicyde-signLLMs.Thesedraftpoliciesundergoaniterativerefinementcycle,guidedbyriskmodelingLLMsthatevaluatepotentialthreatvectorsandgapsinenforcement.Thiscycleispunc-tuatedbycontinuoushumanoversight,ensuringthatpolicyoutcomesstrikeanappropriatebalancebetweenstringency,feasibility,andstrategicreadiness.

Thepolicyframeworkadvancesthroughamulti-stageval-idationpipelinedesignedtoverifyitspracticalapplicabilityandthoroughness.First,policyexpertsgaugeeachproposalagainstpre-establisheddefensestandardsandmission-specificmandates.Ifdiscrepanciesarise—suchasoverbroadregu-lationsthathindercollaboration—expertsproposetargetedmodifications.Thepolicyisthenre-analyzedbyAI-drivenriskmodels,whichconfirmwhetheranynewlyintroducedrevisionsinadvertentlyweakensecurityorintroduceopera-tionalbottlenecks.Thisongoingloopcontinuesuntilthepolicyattainsbothcomprehensivesecuritycoverageandalignmentwithallianceobjectives.Finally,recognizeddomainauthor-

itiesofferstrategicandtacticalvalidation,verifyingthattherecommendeddirectivesneithercompromiseongoingmissionsnorimpedelegitimateinformationexchange.

Oncefullyvetted,therefinedpolicyundergoesaformalratificationpro

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論