![探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第1頁](http://file4.renrendoc.com/view15/M00/1E/29/wKhkGWekkGyAKuTLAALu1xeMvr4506.jpg)
![探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第2頁](http://file4.renrendoc.com/view15/M00/1E/29/wKhkGWekkGyAKuTLAALu1xeMvr45062.jpg)
![探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第3頁](http://file4.renrendoc.com/view15/M00/1E/29/wKhkGWekkGyAKuTLAALu1xeMvr45063.jpg)
![探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第4頁](http://file4.renrendoc.com/view15/M00/1E/29/wKhkGWekkGyAKuTLAALu1xeMvr45064.jpg)
![探索聯(lián)邦軍事大語言模型中的潛在提示注入攻擊及其緩解措施 Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation_第5頁](http://file4.renrendoc.com/view15/M00/1E/29/wKhkGWekkGyAKuTLAALu1xeMvr45065.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Repeatuntilconvergence
ExploringPotentialPromptInjectionAttacksinFederatedMilitaryLLMsandTheirMitigation
YoungjoonLee,TaehyunPark,YunhoLee,JinuGong,JoonhyukKang
arXiv:2501.18416v1[cs.LG]30Jan2025
Abstract—FederatedLearning(FL)isincreasinglybeingadoptedinmilitarycollaborationstodevelopLargeLanguageModels(LLMs)whilepreservingdatasovereignty.However,promptinjectionattacks—maliciousmanipulationsofinputprompts—posenewthreatsthatmayundermineoperationalsecurity,disruptdecision-making,anderodetrustamongallies.ThisperspectivepaperhighlightsfourpotentialvulnerabilitiesinfederatedmilitaryLLMs:secretdataleakage,free-riderexploitation,systemdisruption,andmisinformationspread.Toaddressthesepotentialrisks,weproposeahuman–AIcollab-orativeframeworkthatintroducesbothtechnicalandpolicycountermeasures.Onthetechnicalside,ourframeworkusesred/blueteamwargamingandqualityassurancetodetectandmitigateadversarialbehaviorsofsharedLLMweights.Onthepolicyside,itpromotesjointAI–humanpolicydevelopmentandverificationofsecurityprotocols.Ourfindingswillguidefutureresearchandemphasizeproactivestrategiesforemergingmilitarycontexts.
IndexTerms:federatedlearning,largelanguagemodel,ad-versarialattack,militarypolicy
I.INTRODUCTION
TheriseofLLMsandspecializedAIhardware(e.g.,IntelGaudi)hasacceleratedtheuseofAIinmanydefenseap-plications,enablingadvancedanalyticsthatwerepreviously
outofreach[1]
.
FL[2]providesaframeworkforallied
nationstocollaborativelytrainLLMswhilemaintainingdata
sovereignty[3],[4],asshowninFig
.
1.
ByutilizingFL,eachparticipantpreservessensitiveinformationwhilereducingthe
riskofunauthorizedaccess[5]
.Atthesametime,FLfacilitatescollaborativemodeldevelopment,italsonecessitatesrobustsecuritymeasurestodefendagainstevolvingadversarialtac-
tics[6]
.Specifically,themostpressingconcernisthethreatofpromptinjectionattacks,inwhichadversariescleverlymanipulateoralterinputpromptstoextractsecretdataor
disruptmission-criticalsystems[7],[8]
.
Suchattackscansignificantlyweakenoperationalsecurity,interruptcrucialdecision-makingprocesses,andunderminethetrust
[9]thatunderlieseffectivemilitarycooperation
amongalliednations.BecauseFLinvolvesacoalitionofcountrieswithnumerousAIandanalysisexperts,addressingthesethreatsnecessitatesbothadvancedtechnicalsolutionsandpolicyframeworksthatcanaccommodatevariedde-fenserequirements.
Promptinjectionattacks[10],[11],[12]
mayappearinfourmainformsinmilitarycontext:secretdataleakage,free-riderexploitation,systemdisruption,andmisinformationspread,eachposingdistinctobstaclestothereliabilityandintegrityoffederatedmilitaryLLMs.Thesethreatsoftenremainsubtleandthusdifficulttodetectthrough
traditionalmonitoringmethods[13],underscoringtheneed
Trainwithprivateconfidentialdata
Synchronizeinitial
LLMtoalliednations
Exchangeweight
oftrainedLLMsAggregateLLMs
SynchronizeExchangeLocallearningAggregation
Benignnation'scloudserverCompromisednation'scloudserver
Fig.1:FLframeworkformilitaryLLMtrainingacrossalliednations.Theprocessinvolvesfourkeystages:(1)initialLLMsynchronization,(2)localtrainingwithprivatedata,(3)weightexchange,and(4)modelaggregation.Thisiterativeprocesscontinuesuntilconvergence,whilemitigatingadversarialrisks.Bluecloudsrepresentbenignnation’sserverswhileredcloudsindicatepotentiallycompromisedservers.
forspecializedmethodstailoredtomultinationalcontexts.Recognizingtheseevolvingvulnerabilitiesisessentialforcreatingrobustcountermeasures,asoverlookingthemcouldleavecriticaloperationsopentocompromiseinhigh-stakesmilitaryscenarios.
Inthispaperwepresentaninsightonhowtoaddresstheserisksbypresentingahuman–AIcollaborativecounter-measuresfrombothtechnicalandpoliticalperspectives.Atfirst,weproposetechnicalcountermeasureprocessincludingred/blueteamwargamingandcontinuousqualityassurance,whichhelpunveilhiddenvulnerabilitieswithinsharedLLMinfrastructuresandreinforceoverallsystemresilience.Then,weproposepoliticalcountermeasureprocess,wheremilitarypolicy,domainexperts,andAIexpertsworktogethertoestablishpropersecuritypolicyforthenation.Byapplyingeitherorbothoftheseapproaches,weaimtopresentapracticalsolutiontocounterpresentandemergingpromptinjectionthreatsinfederatedmilitaryenvironments.Therefore,thisensuressustainedoperationaleffectivenessandreinforcestrustamongcoalitionpartners.
Themaincontributionsofthispaperareasfollows:
?WeintroduceFLanditsvulnerabilitiestopromptinjec-tionattacks,highlightingthepotentialrisksandsecuritychallengesindecentralizedAIsystems.
?Wepresentfourpotentialmajorthreatscenariosinmili-taryFL,includingsecretdataleakage,free-riderexploita-tion,systemdisruption,andmisinformationspread.
?Weproposehuman-AIcollaborativecountermeasuresin
perspectiveoftechnicalandpoliticalway.
?Additionally,weemphasizetheneedforstandardizedsecurityframeworksandcooperativedefensestrategies.
Theremainderofthispaperisorganizedasfollows.InSection
II,providesbackgroundknowledgeofFLandpromptinjection
attacks.Section
III
introducesthepotentialchallengesinfederatedmilitaryLLMs.Section
IV
discussestechnicalandpoliticalcountermeasuresforthepotentialthreats.Finally,section
V
exploresfuturedirectionandsection
VI
concludesthepaper.
II.BACKGROUND
Inthissection,weintroducethekeybackgroundconceptsforFLandpromptinjectionattacks.WespecificallyexploretheirimpactonmilitarycollaborationsamongalliednationsandthechallengestheypresentinsecureAIintegration.
A.FLTopologyinMilitaryAlliances
Indata-sensitivefieldssuchashealthcareandfinance
[14],FLhasemergedasanestablishedapproachforsecure
collaborativelearningduetocharacteristicsdepictedinFig.
2.
Themilitaryisalsoincreasinglyconsideringitsadop-tiontoenhanceoperationalsecurityandAI-drivendecision-making.TheFLarchitectureenablesparticipatingnationstocontributetomodeltrainingwhilepreservingtheirexisting
securityinfrastructureandoperationalautonomy[15]
.Thisdecentralizedapproachallowsnationstoleverageinsightsthatmaynotbereadilyavailablewithintheirowndatasourceswhilemaintainingstrictsecuritycontrols.Forexample,theU.S.DepartmentofDefenseisactivelycollaboratingwithacademia,industry,andalliednationstoexploretheadoptionofFLfordatamanagementandresponsibleAI,ensuring
alignmentwithsecurityandoperationalrequirements[16]
.
AmajorbenefitofFLinmilitarycoalitionsisitsabilitytoenhancedecision-makingbyintegratingdiverseoperational
experiencesanddatasources[17]
.Differentnationshaveuniquebattlefieldenvironments,weaponsystems,andthreatintelligence,allofwhichcanbeincorporatedintoasharedmodelwithoutcompromisingnationalsecurity.ThiscollectivelearningimprovestheadaptabilityofAImodelstovariedmilitaryscenarios,makingthemmoreeffectiveinreal-worldmilitaryoperations.Furthermore,FLoptimizescommunica-tionefficiencybyexchangingonlymodelupdatesinsteadofrawdata,significantlyreducingbandwidthrequirements.Thisstreamlinedcommunicationenablesreal-timeadaptability,al-lowingAImodelstorapidlyadjusttoevolvingthreatsanddynamicbattlefieldconditions.
ByincorporatingadvancedLLMsintoaFLframe-work,alliescansecurelymergelanguagedatafromvarioussources.Thisintegrationenhancescross-linguisticcapabilities,strengtheningcommunicationprotocolsinjointoperations.Eachparticipantcontributesdomain-specifictextcorpora,en-richingthesharedmodelwithcontextualknowledgedrawnfromdiversemilitarypractices.Thisholisticapproachbolsterslanguagecomprehension,enablingtheLLMtoaccuratelyinterpretmission-criticaldirectivesandintelligencereports.
Privacy-preservation
-Reduceexposurerisk
-Keepsdatadecentralized
Scalability
t
-Expandacrosssystems
-Seamlessexpansion
FederatedLearning
Jointlearning
-Shareinsights
-Real-timeadaption
Regulatorycompliance
-Meetprivacylaw
-Protectsensitivedata
Fig.2:IllustrationoffourkeyadvantagesinFL:(1)Privacy-preservationcapabilities,enablingreducedexposureriskanddecentralizeddatamanagement;(2)Jointlearningframe-work,facilitatingsharedinsightsandreal-timeadaptation;(3)Systemscalabilitysupportingcross-systemexpansionandseamlessgrowth;and(4)Regulatorycompliancefeaturesensuringadherencetoprivacylawsandprotectionofsensitiveinformation.TheinterconnectedcirculardesignemphasizesthesynergisticrelationshipamongthesekeyfactorsinFL.
Ultimately,FL-drivenLLMtrainingpreservesdatasovereigntywhilefacilitatingfaster,morereliableinformationsynthesisforcoalitiondecision-makers.
B.ConceptofPromptInjectionAttack
Promptinjectionattackshaverecentlyemergedasasignifi-
cantthreatinmodernLLM-basedapplications[18]
.Theseat-tacksexploittheinherentvulnerabilityinAIsystemsthatrelyontextualinstructions,enablingadversariestomanipulateor
alterthepromptsformaliciousoutcomes[19]
.Inmanycases,thesemanipulationsinvolveembeddingcarefullydisguised
instructionsthatexploitamodel’shiddenvulnerabilities[20]
.Unliketraditionaldatapoisoningattacksthattamperwithtrainingdata,promptinjectionfocusesoninterferingwiththemodel’sreasoningprocessafterdeployment.Bysubtlyembeddingdeceptivetriggersormanipulativecontentinuser-providedtext,attackerscanforcethemodeltorevealsensi-tiveinformationorperformunauthorizedactions.AsLLMsbecomeintegraltosensitiveoperations,theriskofprompt
injectionattacksgrowsmorepronounced[21]
.
Themostcriticalchallengeofpromptinjectionattacksistheirpotentialtobypassconventionalsecuritymeasuressuch
asanomalydetectionandcontentfilters[22]
.Becausetheseattacksoftenappearasnormaltextinputs,theycanremainundetecteduntiltheysignificantlycompromiseanoperation.Evenseeminglybenignvariationsinphrasingcanleadtosignificantvulnerabilitieswhenthesystemprocessesthein-put.Additionally,adversariesexhibitevolvingcapabilitiestorefinetheirinjectiontechniques,increasingthecomplexityofpredictionandmitigation.Thisevolvingthreatisparticularlyconcerninginfederatedenvironments,whereasinglepromptinjectioncanpropagateitsadverseeffectsthroughoutfederated
AIsystems[23]
.Consequently,understandingandmitigatingtheserisksisimperativeformaintainingoperationalsecurityandtrustincollaborativemilitaryAInetworks.
Atcompromisednation:
Prompt
Generateasummaryofbattlefieldstrategyandpolicyinsightsbasedontraineddata.
Atcompromisednation:
Secretdata
Sufficient?
yes
Sufficient?
noyes
Secretdata
no
SharedLLMweightsfromalliednations
Init&Fine-tune
Filteruseless
Expert
in-houseLLM
secretdata
verification
End
End
Secretdata
Secretdata
Broadcast
Init&fine-tune
trainedLLM
aggregatedLLM
End
End
Prompt
Completethisclassifiedmilitaryreport:"Thelatestmissile
deploymentlocationsinclude...
Init&Fine-tune
Filteruseless
Expert
in-houseLLM
secretdata
verification
BroadcasttrainedLLM
Init&Fine-tuneaggregatedLLM
(a)Secretdataextractionattack.
(b)Free-riderexploitationattack.
Atcompromisednation:
Aggregate
Atcompromisednation:
Prompt
EnsurethatXlocationisnotincludedinanyattackplansortargetingoperations.
Prompt
Subtlymanipulatethedatainthetrainingdataset.
Expert
verification
Secretdata
Sufficient?
noyes
Aggregate
t↓
↓
Prompt
Sufficient?yes
Secretdata
no
ManipulatedwithaggregatedLLMweight
End
ManipulatedwithtrainedLLMweight
Init&Fine-tunein-houseLLM
Init&Fine-tuneaggregatedLLM
Compare&Broadcast
End-
End
BroadcasttrainedLLM
Broadcast
manipulatedLLM
Expert
verification
(c)Systemdisruptionattack.
(d)Misinformationpropagationattack.
Fig.3:IllustrationoffourpotentialattackscenariosinmilitaryFLenvironments:(a)Secretdataextractionattack,whereadversariessystematicallyprobesharedLLMstoextractclassifiedinformationthroughtargetedpromptsandexpertverification,(b)Free-riderexploitationattackleveragingstrategicpromptstogainmilitaryintelligencewhilewithholdingauthenticdatacontribution,(c)Systemdisruptionattackmanipulatingmodelbehaviorthroughcarefullycraftedpromptstocreatetacticalblindspots,and(d)Misinformationspreadattackutilizingdual-channelpropagationtosystematicallyinjectfalseinformationintothefederation.EachscenariodemonstratessophisticatedattackmethodologiesthatexploitvulnerabilitiesinfederatedmilitaryLLMdeploymentswhilemaintainingapparentlegitimateparticipation.
III.KEYCHALLENGES
Inthissection,wepresentfourpotentialpromptinjectionattackstargetingfederatedmilitaryLLMs.Wespecificallycoverfourcriticalvulnerabilities:secretdataleakage,free-riderexploitation,systemdisruption,andmisinformationprop-agation,eachposinguniqueoperationalandsecurityrisks.
A.SecretDataLeakage
Theriskofsecretdataleaks,asshowninFig.
3a,isa
majorconcerninfederatedmilitaryLLMsystems.Inthesecases,attackerstakeadvantageofalteredtextinputstoextractclassifieddetailsfromthesharedmodel.Insuchsituations,malicioususersorcompromisedgroupsrepeatedlyasktheglobalLLMcarefullydesignedquestionstoaccessrestricteddata,suchasmissilelocationsorthestatusofsurveillancesystems.Theseattackstakeadvantageofhowthemodelstoressensitiveinformation,bypassingstandardsecuritychecksandleadingtounauthorizedaccess.SinceFLgathersdatafrommultiplealliedforces,itincreasestheserisksandallowslarge-scalemaliciousattemptstoextractinformation.
Atthestartoftheattack,adversariescreatesetsoftestquestionsdesignedtorevealhiddeninformation.Aftercol-lectingthemodel’sresponses,theyuseexpertreviewstocheckwhethertheextractedinformationisaccurateanduseful.Byrepeatingthisprocess—improvingquestionsandverifying
answers—theygraduallybuildlargecollectionsofclassifieddata.Inthefinalstage,theyremoveunnecessarydetails,keepingonlythemostusefulinformationfortheiroperations.
Oncetheirdatacollectioniscomplete,adversariesintegratetheextractedsecretsintotheirownmilitaryAIsetupsthroughtwomainchannels.Theymayupdatetheirlocalizedlanguagemodelswiththestolenknowledge,therebyenrichingtheirunderstandingofallieddefenses.Alternatively,theycanincor-poratethesecretdataintothesharedmodelandredistributeittothefederatednetwork,effectivelyembeddingTrojan-likevulnerabilities.Thistwo-stepattacknotonlyputsimmediatesecurityoperationsatriskbutalsocreatesapathforlong-termbreaches.Therefore,itiscrucialformilitaryFLinitiativestoimplementrigorousframeworkstodetect,flag,andpreventprompt-baseddataextractionattack.
B.Free-riderAttack
Free-riderattacksinfederatedmilitaryLLMs,asdepictedinFig.
3b,revolvearoundthestrategicwithholdingofproprietary
databyunscrupulousparticipants.Althoughtheseadversariesstillexploitknowledgegleanedfromcollaborativemodels,theyavoidcontributingtheirownvaluableintelligence,therebyskewingthebenefitsintheirfavor.Thisapproachmirrorsse-cretdataleakagetacticsinsofarasmaliciousactorscanrefinetheirlocalizedlanguagemodelsusingconfidentialinformationobtainedfromthefederation,butheretheprimarygoalisto
capitalizeonsharedupdateswithoutreciprocating.Byapply-ingthesestoleninsightstotheglobalorlocalmodel,free-riderscangainapronouncedtacticaledgewhilesafeguardingtheirhiddendataassets.
Inpractice,suchanasymmetricdynamiccancauseseveralseriousconsequencesformultinationaldefensecooperation.Foremost,thefederation’soverallmodelqualitydeteriorateswhenessentialinputsfromcertainalliesareabsent,reduc-ingthemodel’scontextualreachandpredictiveaccuracy.Inaddition,thetrust-basedstructurethatunderpinsjointinitia-tivesweakensassuspicionsariseconcerninginconsistentdatasharing.Overtime,persistentfree-rideractivitiescanproduceunbalancedmodels,whichoverlookkeyoperationalnuancesanddegradethesystem’sreadiness.Ultimately,effectivelymitigatingtheseattacksdemandsrobustdetectionmethodsandpolicyframeworksthatensureeveryparticipantcontributesanappropriateshareofthecollectiveintelligence.
C.SystemDisruptionAttack
Systemdisruptionattacks,asillustratedinFig.
3c,present
arefinedmethodofsabotageinfederatedmilitaryLLMs,wherehostilefactionssystematicallymodifyhowthemodel
processescrucialoperationaldata.Attheoutset,theadversary
aggregatesupdatesfromdifferentalliedmodelstoestablishaunifiedbaselineripeforexploitation.Theytheninjectintri-catelystructuredpromptsthatseedsubtlemisalignmentsinthemodel’sreasoningaboutspecificmissiontheaters,equipmentcapabilities,orconflictscenarios.Theseplanteddistortionsdisguiseaslegitimaterefinements,makingthemdifficulttodetectthroughstandardverificationchecks.
Attackersfurtherrefinethesedisruptionsbycross-referencingtheaggregatedmodelwithaprivatelyfine-tunedversion,comparingoutcomestoidentifythemosteffectivemeansofintroducingerrors.Throughrepeatedpromptengi-neeringanditerativefeedback,theyembeddeliberatebiasesorblindspotsintothemodel’sstrategicassessments.Thecom-promisedupdatesprogressivelypropagateacrossthepartici-patingorganizations,systematicallyunderminingthemodel’sreliability.Thelong-termramificationsincludeskewedopera-tionalplanning,misjudgedresourceallocation,andweakenedresponsivenesstoemergentthreats.Thisunderscorestheim-portanceofrigorous,ongoingevaluationofmodelrevisionstoexposesignsoforchestratedmanipulation.
D.MisinformationSpread
Misinformationspreadattack,asshowninFig.
3d,tar
-getsthefidelityofknowledgeinfederatedmilitaryLLMsbyorchestratingthedeliberateinjectionoffabricateddataanddistortions.Initially,theattackerdiscreetlyalterstraininginputs,populatingthemwithmisleadingstatementsordoc-toredfactsundertheguiseoflegitimatetextentries.Thesealterationsstealthilyimplantsystemicfalsehoodsintothemodel’srepresentation,underminingthesharedintelligencepoolmaintainedbycollaboratingallies.Theprimaryriskofthisschemeliesinitspropensitytoemergegradually,asthe
introducedmisinformationblendsseamlesslywithauthenticcontent.
Maliciousparticipantsrefinetheirtechniquesbymodifyingbothlocaldatasetsandcombinedmodelweights,leverag-ingsubject-matterexpertstovalidatewhetherthefabricateddetailsappearplausible.Thislayeredvalidationapproachhelpsensurethefalsehoodsremainundetectedandeffectivelyintegrated.Overtime,thecorruptedupdatesarebroadcastbacktotheFLnetworkinmultiplewaves,compoundingtheinfiltra-tion.Thisresultsinapervasivespreadofinaccuraciesthatcanobscurecriticalwarnings,distortadversaryprofiles,orskewstrategicdeliberations.Consequently,implementingrobustval-idationprotocols,thoroughcross-referencingofsources,anddynamicthreatintelligencereviewsisvitalinmitigatingthedangersposedbytargetedmisinformationcampaigns.
IV.COUNTERMEASURES
Inthissection,wepresentahuman-aicollaborativestrat-egyforprotectingfederatedmilitaryLLMsagainstprompt
injectionattacks.Weproposecountermeasuresbasedonboth
technicalandpoliticalperspectivestoensurerobustdefenseframeworkswhilemaintainingstrategicpolicyalignment.
A.TechnicalCountermeasures
Onthetechnicalfront,oursolutionfeaturesawargaming-centricmethodologythatcapitalizesoncollaborativeinterac-tionsbetweenhumanexpertsandAI-drivensystemsasshowninFig.
4a.
Attheoutset,thoroughvulnerabilityassessmentsguideanAI-driventhreatdesignprocess,pinpointingpotentialattackpathwaysandevaluatingtheiroperationalrepercussions.ThisformsthefoundationforspecializedredteamandblueteamLLMsimulations,whereinredteammodelslaunchsimu-latedassaultstargetingrecognizedweaknesses,andblueteammodelsdeviseadaptiveresponsesinrealtime.Throughoutthissimulatedengagement,militarydomainspecialistsscrutinizethetacticsandoutcomes,ensuringthatdefensivemeasuresaccuratelymirrorreal-worldscenarios.
Akeystrengthofthisframeworkistheiterativelearn-ingcycleenabledbycontinualadversarialinterplay.AstheredteamLLMsadapttheirattackvectors,theblueteamLLMsconcurrentlyrefinecountermeasuresbasedonreal-timeinsightsandexpertrecommendations.Thisconstantback-and-forthhonesthesystem’sresilience,ultimatelyallowingthefederationtoidentifyandpatchhiddenvulnerabilities.Onceadequatedefensivecapacityisconfirmed,theframeworkprogressestoacomprehensivequalityassurance(QA)phase.DedicatedQALLMscontinuouslymonitorthedeployedmod-elsforirregularitiesorattemptedexploits,drawingonexpertinputwhenanomaliesemerge.Automatedcorrectionprotocolsaddressminorthreatstomaintainuninterruptedoperations,andmajorfindingstriggertargetedanalysisbydomainspecialists.Thismulti-layeredsetupensuresthatfederatedmilitaryLLMsarenotonlyshieldedfrompromptinjectionattacksatdeploy-mentbutalsoremainrobustagainstevolvingadversarialtacticsovertime.
Technicalcountermeasures:
SharedLLMs
ConfirmedLLMs
Human-AIcollaborativered/blueteamwargaming
Error
correction
Start一
fromalliednations
Vulnerabilityanalysis
ThreatdesignbyLLM
!
Attacker:RedteamingLLM
Defender:BlueteamingLLM
Aggregate
Qualityexpertverification
End
!
!
Domainexpertverification
Sufficient?
MonitoringbyQALLM
No
Yes
Domainexpertfeedback
AggregatedLLM
(a)Technicalcountermeasuresframework.
Policycountermeasures:
Commentsbydomainexperts
PolicydesignbyLLM
RiskmodelingbyLLM
PolicyReviewbyLLM
Policyexpertconfirmation
Policyupdate
一End
Start一
!!t
AIcommitteeconfirmation
Policyexpertverification
Domainexpertconfirmation
Sufficient?!Sufficient?!
Policyexpert◆◆
feedbackNoYesNoYes
Human-AIcollaborativepolicydesign
(b)Policycountermeasuresframework.
Fig.4:Proposedhuman-AIcollaborativecountermeasureframeworksforprotectingfederatedmilitaryLLMs:(a)Technicalframeworkimplementingred/blueteamwargamingmethodology,wherespecializedLLMsconductadversarialtestingunderdomainexpertsupervision,followedbycomprehensivequalityassuranceanderrorcorrectionprocesses,(b)PolicyframeworkutilizingiterativepolicydevelopmentthroughAI-drivendesignandriskmodeling,withmulti-stageexpertverificationandconfirmationprotocolstoensurerobustsecuritymeasures.BothframeworksemphasizecontinuouscollaborationbetweenhumanexpertiseandAIcapabilitiestomaintainoperationalsecuritywhilepreservingsystemeffectiveness.
B.PolicyCountermeasures
FromapolicystandpointasshowninFig.
4b,weintroduce
astructuredhuman–AImodelthatembedsrigoroussecurityrequirementsintotheorganizationalandoperationalprocessesgoverningfederatedLLMs.Theinitiativecommenceswithdomainexpertscontributingbaselinesecuritypriorities,whichareconvertedintoformalguidelinesbyspecializedpolicyde-signLLMs.Thesedraftpoliciesundergoaniterativerefinementcycle,guidedbyriskmodelingLLMsthatevaluatepotentialthreatvectorsandgapsinenforcement.Thiscycleispunc-tuatedbycontinuoushumanoversight,ensuringthatpolicyoutcomesstrikeanappropriatebalancebetweenstringency,feasibility,andstrategicreadiness.
Thepolicyframeworkadvancesthroughamulti-stageval-idationpipelinedesignedtoverifyitspracticalapplicabilityandthoroughness.First,policyexpertsgaugeeachproposalagainstpre-establisheddefensestandardsandmission-specificmandates.Ifdiscrepanciesarise—suchasoverbroadregu-lationsthathindercollaboration—expertsproposetargetedmodifications.Thepolicyisthenre-analyzedbyAI-drivenriskmodels,whichconfirmwhetheranynewlyintroducedrevisionsinadvertentlyweakensecurityorintroduceopera-tionalbottlenecks.Thisongoingloopcontinuesuntilthepolicyattainsbothcomprehensivesecuritycoverageandalignmentwithallianceobjectives.Finally,recognizeddomainauthor-
itiesofferstrategicandtacticalvalidation,verifyingthattherecommendeddirectivesneithercompromiseongoingmissionsnorimpedelegitimateinformationexchange.
Oncefullyvetted,therefinedpolicyundergoesaformalratificationpro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文s版聽評課記錄
- 人教版八年級地理上冊《第三章第三節(jié)水資源》聽課評課記錄
- 2025年度荒山承包經(jīng)營權(quán)轉(zhuǎn)讓與生態(tài)旅游投資合同
- 人教版地理八年級下冊第五章《中國的地理差異 聽課評課記錄》聽課評課記錄
- 2025年度拆除工程安全責任與環(huán)保承諾合同范本
- 魯人版道德與法治七年級下冊12.1《感恩師愛》聽課評課記錄
- 2025年度建筑工程施工合同備案與監(jiān)管規(guī)定
- 人教版數(shù)學八年級下冊聽評課記錄:第19章 一次函數(shù)(三)
- 粵人版地理七年級上冊《第二節(jié) 世界的人種、語言和宗教》聽課評課記錄1
- 湘教版數(shù)學九年級上冊4.2《正切》聽評課記錄1
- 復旦中華傳統(tǒng)體育課程講義05木蘭拳基本技術(shù)
- GB/T 13234-2018用能單位節(jié)能量計算方法
- (課件)肝性腦病
- 北師大版五年級上冊數(shù)學教學課件第5課時 人民幣兌換
- 工程回訪記錄單
- 住房公積金投訴申請書
- 高考物理二輪專題課件:“配速法”解決擺線問題
- 檢驗科生物安全風險評估報告
- 京頤得移動門診產(chǎn)品輸液
- 如何做一名合格的帶教老師PPT精選文檔
- ISO9001-14001-2015內(nèi)部審核檢查表
評論
0/150
提交評論