




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第4節(jié)旋轉(zhuǎn)的性質(zhì)與手拉手模型
前言:相比平移、對稱,旋轉(zhuǎn)無疑是三大變換中最難的一個,一方面在于圖形構(gòu)造較為復(fù)雜,另一方面旋轉(zhuǎn)本
身的故事就很多.本節(jié)從性質(zhì)開始,介紹旋轉(zhuǎn)經(jīng)典模型之一:手拉手模型.
知識導(dǎo)航
對應(yīng)邊相等
旋轉(zhuǎn):如圖,將仆ABC繞點A旋轉(zhuǎn)一定角度得到△ADE.
結(jié)論:AB=AD,AC=AE,BC=DE.
引例1:如圖,在△ABC中,AB=2,BC=3.6,NB=60。,將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,當(dāng)點B的對應(yīng)
點D恰好落在BC邊上時,則CD的長為()
A.1.6B.1.8C.2D.2.6
解析:由題意得:AABC^AADE,
/.AB=AD,
又/B=60。,「.△ABD是等邊三角形,
;.BD=AB=2,
XBC=3.6,->.CD=1.6.
.,.選A.
對應(yīng)角相等
結(jié)論:ZB=ZD,ZC=ZE,ZBAC=ZDAE.
A
引例2:如圖,在△ABC中,ZCAB=55°,ZABC=25°,在同一平面內(nèi),將△ABC繞A點逆時針旋轉(zhuǎn)70。得到△
ADE,連接EC,貝(JtanNDEC的值是_
解析:由題意得:ZEAC=70°,
JZAEC=ZACE=55°,
又NEAD=NCAB=55。,
???NCAD=15。,
■:ZACE+ZCAD=ZADE+ZDEC,
JZDEC=45°,
tanZDEC=l.
旋轉(zhuǎn)角相等
結(jié)論:ZBAD=ZCAE=ZBFD.(尤其關(guān)注BC與DE夾角)
證明:由題意得:ZBAD=ZCAE,
VZBAD+ZB=ZBFD+ZD,且/B=/D,
.\ZBAD=ZBFD.
引例3:如圖,△ABC和△ADE是有公共頂點的等腰直角三角開么ZBAC=ZDAE=90°.
E
D
AA
圖1
⑴如圖1,連接BE、CD,BE的延長線交AC于點F,交CD于點P,求證:BP±CD;
(2)如圖2,把△ADE繞點A順時針旋轉(zhuǎn),當(dāng)點D落在AB上時,連接BE、CD,CD的延長線交BE于點P,若B
C=6V2,AD=3,求4PDE的面積.
解析:(1)如下左圖,AAEB^AADC,.,.ZABE=ZACD,$nTS§],由“8字”模型可得:ZFPC=ZFAB=90°.
(2)由(1)可知NBPC=90。,
VAD=3,AC=6,;.CD=3V5
VZBPC=ZADC=90°,AACAD^ACPE,
..?=££=*可得:PE=迪,CP=鯉,
CPCEPE55
cc3V5c19V53V527
???PD=—,???SPDE=-x—X—=—.
5PDE25510
...△PDE的面積為養(yǎng)
手拉手模型
條件:如圖,OA=OB,OC=OD(四線共點兩兩相等),NAOB=/COD(夾角相等)
結(jié)論:△OACg^OBD(SAS)
引例4:如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①B
E=DG;②BE_LDG;(③。盾+BG2=2a2+2〃,其中正確結(jié)論是.(填序號)
解析:由手拉手模型可得①②正確,下分析③:
、
連接BD、EG,2a2+2bz=BD2+痔,記BEDG交點為H點,
BD2=BH2+DH2,EG2=EH2+GH2,
DE2=DH2+EH2,BG2=BH2+GH2,
:.DE2+BG2=BD2+EG2,DE2+BG2=2a2+2b2.
模型拓展
手拉手模型中的相似:
已知△ABCdADE外,則4ABD和4ACE均為等腰三角形,且有ABDACE,^=*祟一般地.若小AB
C^AADE,貝必ABD^AACE.
引例5:如圖,在矩形ABCD中,將/ABC繞點A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應(yīng)邊BC交CD邊
于點G.連接BB\CC.若AD=7,CG=4,AB,=BG,則三=(結(jié)果保留根號).
DD
解析:連接AC、AC,則4BB'?4%,鋁=靜,連接AG,解=久,,則BG=x,DG=x-4,
AG2=AB,2+BrG2=AD2+DG2,
代入得:%2+%2=72+(%—4產(chǎn)
解得:=5,x2=-13(舍),
.CC^__AC_V74
?'BB'~AB~5
模型構(gòu)造
所謂構(gòu)造手拉手模型,實則構(gòu)造旋轉(zhuǎn),結(jié)合已知條件,添加輔助線構(gòu)造旋轉(zhuǎn)型全等,得角或線段間的數(shù)量關(guān)系.
引例6:如圖,在等邊三角形ABC中,點E是邊AC上一定點,點D是直線BC上一動點,以DE為一邊作等邊
三角形DEF,連接CF.
【問題解決】
如圖1,若點D在邊BC±,求證:CE+CF=CD;
【類比探究】
如圖2,若點D在邊BC的延長線上,請?zhí)骄烤€段CE、CF與CD之間存在怎樣的數(shù)量關(guān)系?并說明理由.
解析:⑴如圖,過點E作EG〃AB交BC于點G,則ACEG是等邊三角形,
可彳導(dǎo):△EGD0ZXECF,;.DG=CF,CG=CE,CD=CG+GD=CE+DF,即CE+CF=CD.
(2)如圖.過點E作EG〃AB交BC于點6貝必CEG是等邊三角形,
可得:△EGDdECF,;.DG=CF,CG=CE,CD=DG-CG=CF-CE,
即CD=CF-CE.
真題演練
1.如圖在RtAABC中./B=9(r,AB=5,BC=12,將^ABC繞點A逆時針旋轉(zhuǎn)得到△ADE,使得點D落在AC
上,則tan/ECD的值為.
2.如圖,在4ABC中,ZACB=90°,將4ABC繞點C順時針旋轉(zhuǎn)得到小DEC,使點B的對應(yīng)點E恰好落
在邊AC上,點A的對應(yīng)點為D,延長DE交AB于點F,則下列結(jié)論一定正確的是()
A.AC=DEB.BC=EF
C.ZAEF=ZDD.AB±DF
3.如圖,在4ABC中,AC=BC,將4ABC繞點A逆時針旋轉(zhuǎn)60。得到△ADE.若AB=2,NACB=30。,則線段CD
的長度為.
4.如圖,在矩形ABCD中,AB=5,AD=3.矩形ABCD繞著點A逆時針旋轉(zhuǎn)一定角度得到矩形ABCD.若點B的
對應(yīng)點B落在邊CD上,則BC的長為
C
AB
5.如圖,在菱形ABCD中,AB=2,/BAD=60。,將菱形ABCD繞點A逆時針方向旋轉(zhuǎn),對應(yīng)得到菱形AEFG,點E
在AC±,EF與CD交于點P,則DP的長是.
6.如圖,點E是正方形ABCD的邊DC上一點,把△ADE繞點A順時針旋轉(zhuǎn)90。到4ABF的位置,若四邊
形AECF的面積為25,DE=2,貝1]AE的長為()
D.V29
7.如圖,正方形ABCD的邊長為4,點E是CD的中點,AF平分NBAE交BC于點F,將4ADE繞點A順時針
旋轉(zhuǎn)90。得仆ABG,貝UCF的長為.
8如圖,AABC中,ZBAC>90°,BC=5,WAABC繞點C按順時針方向旋轉(zhuǎn)90°,點B對應(yīng)點B落在BA的延
長線上.若sinzBMC=巳貝UAC=.
9.如圖,在RtAABC中"AB=2,ZC=30°,將RtAABC繞點A旋轉(zhuǎn)得到RtAABC,使點B的對應(yīng)點B落在AC
上,在BC上取點D,使B,D=2,那么點D到BC的距離等于()
A2(R+1)B.—+1
3
C.V3-1D.V3+1
10.如圖,在△ABC中,/BAC=9(T,AB=AC=10cm,點D為△ABC內(nèi)一點,/BAD=15>AD=6cm,連接BD,將4
ABD繞點A按逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應(yīng)點為點E,連接DE,DE交AC于點F,則CF的長
為cm.
11.如圖,△ABC是等邊三角形,點D為BC邊上一點,BD=”C=2,以點D為頂點作正方形DEFG,且DE
=BC,連接AE、AG.若將正方形DEFG繞點D旋轉(zhuǎn)一周,當(dāng)AE取最小值時,AG的長為.
12.如圖.將^ABC繞點C順時針旋轉(zhuǎn)得到4DEC,使點A的對應(yīng)點D恰好落在邊AB上,點B的對應(yīng)點為
E,連接BE,下列結(jié)論一定正確的是()
A.AC=ADB.AB±EB
C.BC=DED.ZA=ZEBC
13.如圖在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)得到矩形GBEF,點A落在
矩形ABCD的邊CD上,連接CE,則CE的長是一
14.如圖,在四邊形ABCD中,AD/7BC,乙4BC=90°,AB=2小,BB,=2,AD=2?將小ABC繞點C順時針
方向旋轉(zhuǎn)后得△A'B'C,當(dāng)AB恰好經(jīng)過點D時,△B'CD為等腰三角形,則AA'=()
A.VT1B.2V3C.V13D.714
15.如圖1,AABDDCE都是等邊三角形.
探究發(fā)現(xiàn)
(DABCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.
拓展運用
(2)若B、C、E三點不在一條直線上,ZADC=30°,AD=3,CD=2,求BD的長.
(3)若B、C、E三點在一條直線上(如圖2),且4ABC和4DCE的邊長分別為1和2,求4ACD的面積及AD
的長.
16.背景:一次小組合作探究課上,小明將兩個正方形按如圖所示的位置擺放(點E、A、D在同一條直線上),
發(fā)現(xiàn)BE=DG且BEXDG.
小組討論后,提出了下列三個問題,請你幫助解答:
(1)將正方形AEFG繞點A按逆時針方向旋轉(zhuǎn)(如圖1),還能得到BE=DG嗎?若能,請給出證明;若不能,
請說明理由;
(2)把背景中的正方形分別改成菱形AEFG和菱形ABCD,將菱形AEFG繞點A按順時針方向旋轉(zhuǎn)(如圖2),
試問當(dāng)NEAG與/BAD的大小滿足怎樣的關(guān)系時,背景中的結(jié)論BE=DG仍成立?請說明理由;
(3)把背景中的正方形分別改寫成矩形AEFG和矩形ABCD,且爺=*=|,4E=4,28=8,將矩形AEFG繞
點A按順時針方向旋轉(zhuǎn)(如圖3),連接DE、BG.小組發(fā)現(xiàn):在旋轉(zhuǎn)過程中,DE2+BG?的值是定值,請求出這個定
值.
17.如圖1,在小ABC中,ZA=90°,AB=AC=V2+1,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE.
現(xiàn)將△ADE繞點A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為(a(0。<a<360。),,如圖2,連接CE、BD、CD.
⑴當(dāng)0°<a<180。時,求證:CE=BD;
(2)如圖3,當(dāng)a=90。時,延長CE交BD于點F,求證:CF垂直平分BD;
(3)在旋轉(zhuǎn)過程中,求4BCD的面積的最大值,并寫出此時旋轉(zhuǎn)角a的度數(shù).
18.AABC為等邊三角形,AB=8,ADXBC于點D,E為線段AD上一點,AE=2%.以AE為邊在直線AD
右側(cè)構(gòu)造等邊三角形AEF,連接CE,N為CE的中點.
⑴如圖1,EF與AC交于點G,連接NG,求線段NG的長;
⑵如圖2,將AAEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為a,M為線段EF的中點,連接DN、MN.當(dāng):30。<a<120。時,
猜想/DNM的大小是否為定值,并證明你的結(jié)論;
⑶連接BN,在4AEF繞點A逆時針旋轉(zhuǎn)過程中,當(dāng)線段BN最大時,請直接寫出△ADN的面積.
A
解析:對應(yīng)邊相等求線段長,即可得所求角的正切值.
由題意得:AD=AB=5,EN=CB=12,
,-.CD=AC-AD=13-5=8,,-.tanZECD=-=-
2.D.
解析:根據(jù)旋轉(zhuǎn)的性質(zhì),可得AB_LDF,.?.選D.
3.2.
解析:連接EC,由題意可得△ACE是等邊三角形,
.,.EC=AC=BC=ED,.,.△ECD^AEAD,
;.CD=AD=AB=2,;.CD的長為2.
B
4.1.
解析:無論圖形是什么,抓住旋轉(zhuǎn)的重點來分析.
過點B作BH_LAB交AB于H點,貝!|AH=4,BH=1,;.B'C=L
5.V3-1.
解析:特殊的菱形旋轉(zhuǎn)特殊的角度必然得到其他特殊的圖形.連接DE,可得APDE是等腰直角三角形,:AB=2,
:.AC=2V3,VAE=AB=2,.*.CE=2存2,
PE=V3-1,PO=V3-1.
6.D.
解析:由題意得:得^ADE經(jīng)△ABF,
正方形ABCD面積為25,所以邊長AD=5,又DE=2,
AE=V52+22=回故選D.
7.6-2V5.
解析:設(shè)/EAF=NBAF=a,NDAE=/BAG=[3,貝!J/GAF=a+p=/GFA,;.GF=GA=EA=2V5CF=CG-GF=6-
2曲,,CF的長為(6-2V5.
25V2
解析:題目給出/BAC的正切值,故構(gòu)造包含/BAC的直角三角形.過點C作CHLBB交BB,于點H,
則以=加=裊5=哈
根據(jù)sin/BNC,即羽
可得:"=與==等,
9.D.
解析:延長CE交BC于點M,連接AM,
貝?。軧'M=BM=竽,DM=2+手,
M/V=l+y,DW=V3+1,故選D.
10.(10-276).
解析::/BAD=15。,;./CAE=15。,;./AFH=60。過點A作AH_LDE交DE于H點,?.?AD=6cm,;.AH=3V2cm,
HF=46cm,AF=246cm,CF=(10-2V6)cm,S^CF的長為(10-2呵cm.
11.8.
解析:如圖,當(dāng)D、A、E三點共線時,AE最小,過點A作AMLBC交BC于M點,
???DM=1,AM=3V3,AD="+27=2近,此時AG=128+36=8,故AG的長為8.
12.D.
根據(jù)△ACB^ADCE,可得△CAD和4CBE是等腰三角形,目4CAD^ACBE,AZA=ZEBC,故選D.
13、|V10,
解析::BG=AG=5,BC=3,;.CG=4,DG=1,
連接AG,AG=V32+l2=V10,
由題意得:△BEC^ABGA,CE=-BCA,
代入解得:CE=|VTU,故CE的長為|VTo.
14.A.
解析:過點c作CEXAD交AD延長線于點E,則四邊形ABCE是矩形,設(shè)BC=x,貝U.B'D=B'C=BC=居又A
D=2,/.DE=x-2,勾股定理得:
2
22
x+x=(x-2)2+(2V7),解得:Xi=4,x2=-8
(舍),,AB=2VT1,由題意得:ACBB'^ACAA',
..用=生=2=叵=舊故選A.
BBrCB42
15.解析:(1)全等,證明略.
⑵若NADC=30°,貝!|/ADE=90°,:CD=2,;.DE=2,;.AE=V32+22=BD=AE=V13.
⑶過點A作AH±CD交CD于點H,則CH=1,AH=V52
SACD=|x2xy=當(dāng)又DH=I,
AD=+:=V3.
故小ACD的面積是AD的長為V3
16.解析:(1)成立.由題意得:△AEB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 干冰加水物理課件
- 獻縣第一中學(xué)語文復(fù)習(xí)每日悅讀4
- 陜西中醫(yī)藥大學(xué)《中國現(xiàn)當(dāng)代文學(xué)IV》2023-2024學(xué)年第二學(xué)期期末試卷
- 陜西咸陽武功縣普集高級中學(xué)2025年高三高考模擬訓(xùn)練評估卷(4)數(shù)學(xué)試題含解析
- 安全用電小知識小學(xué)生
- 陜西漢中市漢臺區(qū)縣2025年高三下學(xué)期專項練習(xí)數(shù)學(xué)試題含解析
- 陜西省五校2025年高三年級下學(xué)期第二次月考試題含解析
- 陜西省實驗中學(xué)2024-2025學(xué)年高三數(shù)學(xué)試題下學(xué)期期末考試試題(A卷)含解析
- 陜西省渭南市尚德中學(xué)2024-2025學(xué)年高三下學(xué)期物理試題試卷含解析
- 試驗員年終工作總結(jié)模版
- 員工反腐敗與合規(guī)培訓(xùn)制度
- 中國絕經(jīng)管理與絕經(jīng)激素治療指南(2023版)解讀
- 《跟上兔子》繪本五年級第1季A-Magic-Card
- NB∕T 47020~47027-2012 壓力容器法蘭
- SYT 7628-2021 油氣田及管道工程計算機控制系統(tǒng)設(shè)計規(guī)范-PDF解密
- 在線網(wǎng)課知慧《貴州省情(貴州理工學(xué)院)》單元測試考核答案
- MOOC 概率統(tǒng)計-西南石油大學(xué) 中國大學(xué)慕課答案
- 2022年四川省南充市【中考】語文真題【帶答案】
- 2024年低壓開關(guān)柜市場前景分析:我國低壓開關(guān)柜市場規(guī)模約為28億元
- 2024浙江省煙草專賣局(公司)管理類崗位招聘筆試參考題庫附帶答案詳解
- 遼寧省沈陽市2023-2024學(xué)年高一上學(xué)期期末質(zhì)量監(jiān)測英語試題(含答案)
評論
0/150
提交評論