2024年高考數學真題完全解讀(北京卷)_第1頁
2024年高考數學真題完全解讀(北京卷)_第2頁
2024年高考數學真題完全解讀(北京卷)_第3頁
2024年高考數學真題完全解讀(北京卷)_第4頁
2024年高考數學真題完全解讀(北京卷)_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024年北京高考數學卷(以下簡稱北京卷)在命題思路和特點上展現(xiàn)了其獨特之處,充分體現(xiàn)了“立德樹人,服務選才,引導教學”的命題指導原則,并在此基礎上實現(xiàn)了守正創(chuàng)新北京卷注重將數學知識與德育內容相融合,通過精心設計的題目,使考德育價值。例如,通過引入古代數學文化元素,讓考生了解中華優(yōu)秀傳統(tǒng)文化的心和自豪感。同時,試卷還關注勞動教育和美育的考查,使考生在育價值。北京卷在命題上緊扣課標和教材,注重考查考生的數學基礎知識、基本北京卷在命題中充分體現(xiàn)了首都特色和創(chuàng)新精神。試卷在題目設計和呈開放性問題、多項選擇問題等,激發(fā)考生的探究興趣和創(chuàng)新思維。同時,試卷還北京卷在保持命題穩(wěn)定性的基礎上,不斷探索和創(chuàng)新。試卷在命題思路學科本質的理解、思想方法的領悟、應用探究能力的提升、創(chuàng)總的來說,2024年北京高考數學卷在命題上體現(xiàn)了全面育人、選拔人才和引導教學的理念,注重考查考生的數學素養(yǎng)和思維品質,彰顯了首都特色和北京2024年高考數學題目設計在整體結構上與往年保持了一致性,依然注重考查學生對集合、復數、二項式定理、解析幾何、立體幾何、導數的綜合運用等知識點的掌握情況。分題目設計得相對簡單,旨在檢驗學生的基礎知識與基本技能,預計這一部分的分值大約占100分左右。難題的數量相對較少,但加強了對學生思維能力的考查,強調學科核心素養(yǎng)的導向。數,旨在讓不同層次的學生都能得到充分的展示機會。特別是第10、15、19、20、21題,這些題目設置得較為有區(qū)分度,能夠拉開不同學生之間的水平差距。特別值得一提的是第21題,這道題目以新定義的形式出現(xiàn),旨在為優(yōu)秀的人才提供充分展現(xiàn)才華的空間,服務拔尖創(chuàng)新人才的選拔,助推素質教育的發(fā)展。整個試卷的設計避免了死記硬背和偏題怪題,引導中學數學教學從總結解題技巧轉向培養(yǎng)學生的學科核心素養(yǎng),體現(xiàn)了高考改革的新方向。題號題型模塊(題目數)14分集合(共2題)24分復數的乘法4運算復數(共1題)34分直線與圓、點到直線的距離解析幾何(共4題)44分二項式展開式中的系數二項式定理(共1題)54分平面向量(共1題)64分(共4題)74分函數(共3題)84分空間中點線面的位置關系及空間幾何立體幾何(共3題)94分指數函數和對數函數的單調性及基本函數(共3題)基本不等式(共1題)4分的思想去轉化題目中的幾何意義集合(共2題)函數(共3題)5分填空題拋物線的性質解析幾何(共4題)5分填空題(共4題)5分填空題雙曲線的基本性質解析幾何(共4題)5分填空題積數列(共3題)空間幾何體的體積(共3題)5分填空題征分析它們之間的性質數列(共3題)成對數據分析(共1題)13分(共4題)13分線面平行、面面所成角立體幾何(共3題)14分古典概型、離散型隨機變量分布列統(tǒng)計與概率15分關系解析幾何(共4題)15分導數的綜合運用導數(共1題)15分新定義、數列數列(共3題)我們不應僅僅滿足于對知識點的記憶和背誦,而應深入理解知識的產生過程。這景、發(fā)展脈絡以及其在整個學科體系中的位置和作用。通過追溯知識的根源識,增強記憶深度,同時培養(yǎng)我們的思維能力和探索精神。(2)以問題為導向的基礎復習:問題導向的復習方法能夠幫助我們更加有針對性地進行學習。通過設定問題,我們能夠明確自己的學習目標,從同時,通過解決問題,我們能夠加深對知識點的理解和記憶,形成更加完整和系統(tǒng)的知識體系。(3)重視教材的使用:教材是學科知識的載體,也是我們進行復習的主要工具。因此,利用教材,深入研讀教材內容。通過反復閱讀和思考教材內容,我們能夠更好地對知識的印象。同時,教材上的例題和習題也是我們進行練習和鞏固知識的重要資源。(4)題組教學,變式訓練:題組教學和變式訓練是提高學生解題能力和思維水平的有效方法典型的例題進行深入的解析和訓練。通過題組教學,我們能夠了解不同題的套路和技巧。同時,通過變式訓練,我們能夠拓展解題思路和方法,提高解題的靈活性和應變能在復習課之前,我們應該進行一番自我檢測。通過回顧教材、筆記和之前的作業(yè),梳識點,同時標出那些還存在疑惑或未掌握的內容。這樣的預復習不僅能幫助我們聽課時更有針對性地吸收知識。(2)動手做題,明確難點:課之前,我們可以嘗試獨立完成其中的例題。在解題過程中,我們可能會遇到一些難正是我們聽課的重點,它們將引導我們更加深入地理解知識,并找出自己的不足。(3)聽課有重點,多動腦思考:在聽課時,我們要保持高度的專注力,認真聽老師講解每一個知識點和解題時遇到的難點,要特別留意老師的講解,并多動腦思考,確參與課堂討論,發(fā)表自己的觀點和疑問,與老師和同學共同探討,以加深對知識點的理解。(4)課后及時鞏固與反思:課后,我們要及時鞏固所學內容,通過做題、復習筆記等方式加深3.精準糾錯,深化反思,完善知識體系(1)在高三的緊張復習階段,我們需要積極“以錯糾錯”,即專門收集日常作業(yè)中的錯誤。隨著復習的深入,我們將面對幾十套甚至上百套的各類試題,每個錯誤都是我們成長的墊腳石。(2)若在做題時出錯較多,建議在試卷上對錯題進行標記,并旁邊附上簡短的評析。隨后,妥善保存這些試卷。定期回顧這些“錯題筆記”或標記了錯題的試卷,將幫助我們有針對性地進行查漏補缺。(3)在閱讀參考書時,不妨將精彩之處或錯誤的題目也做上標記。這樣,在再次翻閱時就能有所側重,實現(xiàn)精準復習。查漏補缺不僅是對知識的回顧,更是對自己思維方式的反思與提升。(4)除了逐一理解不同問題外,更要學會“舉一反三”,及時歸納總結。每次訂正試卷或作業(yè)時,都要在錯題旁詳細記錄錯誤原因。常見原因包括:①無從下手解題;②概念模糊、理解不透徹;③方法選擇不當;④知識點間遷移和綜合存在問題;⑤情景設計理解困難;⑥熟練度不夠,時間緊迫;⑦粗心大意或計算失誤。通過一段時間的自查,建立一份個性化的補差檔案,持續(xù)邊查邊改。隨著時間的推移,重復犯錯的頻率會大幅降低。同時,隨著自我認識的不斷深化,考試時的自信心將增強,緊張情緒也將得到緩解。2024年高考數學真題完全解讀(北京卷)2024年高考數學真題完全解讀(北京卷)一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知集合M={x|-4<x≤1},N={x|-1<x<3},則MUN=()A.{x|-4<x<3}B.{x|-1<x≤1}c.{0,1,2}D.{【命題意圖】本題考查集合的并集運算,考查數學運算的核心素養(yǎng).難度:易.【點評】集合是高考每年必考知識點,一般以容易題面目呈現(xiàn),考查熱點一是集合的并集、交集、補集運算,二是集合之間的關系,所給集合多為不等式集、離散的數集或點集,這種考查方式多年來保持穩(wěn)定.【知識鏈接】1.求解集合的運算問題的三個步驟:(1)看元素構成,集合是由元素組成的,從研究集合中元素的構成入手是解決集合運算問題的關鍵,即辨清是數集、點集還是圖形集等;(2)應用數形結合進行交、并、補等運算,常用的數形結合形式有數軸、坐標系和韋恩圖(Venn).A.1-iB.-i【命題意圖】本題考查復數的乘法運算,考查數學運算與數學抽象的核心素養(yǎng).難度:易.【答案】C點一是復數的概念與復數的幾何意義,如復數的模、共軛復數、純虛數、復數相等、復數的幾何意義等,二是復數的四則運算運算.【知識鏈接】解復數運算問題的常見類型及解題策略(1)復數的乘法.復數的乘法類似于多項式的四則運算,可將含有虛數單位i的看作一類同類項,不含i的看作另一類同類項,分別合并即可.(2)復數的除法.除法的關鍵是分子分母同乘以分母的共軛復數,解題中要注意把i的冪寫成最簡形式.(3)復數的運算與復數概念的綜合題.先利用復數的運算定義解答.(4)復數的運算與復數幾何意義的綜合題.復數的幾何意義解答.A.√2B.2難度:易【答案】D則其圓心坐標為(1,-3),則圓心到直線x-y+2=0的距離為.故選:D.【點評】今年的直線與圓的位置關系考的比往年要簡單,往年著重考查圓有關的最值問題,今年考查的是基礎知識的運用,學生易得分?!局R鏈接】(1)對于方程x2+y2+Dx+Ey+F=0(D,E,F為常數),當D2+E2-4F>0時,方程的展開式中,x3的系數為()B.-6【命題意圖】本題考查二項式展開式的系數問題,數學運算的核心素養(yǎng)。難度:易【答案】A【點評】相較于往年,今年的題目在難度上稍有提升,其中新加入了分數指數冪的知識點,為考生帶來了新的挑戰(zhàn)。然而,從總體方向來看,題目的主要考查點并未改變,仍舊聚焦于二項式展開式的系數問題,旨在檢驗考生對該知識點的掌握與運用?!局R鏈接】二項式展開式的通項公式Tk+1=Cha"-kbkA.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【命題意圖】本題考查平面向量的數量積運算及命題與邏輯,數學邏輯推理及數學運算的核心素養(yǎng)。難度:易【答案】B可知(a+b)(a-b)=0等價于la=6,綜上所述,"(ā+b)·(a-b)=0”是“a≠b且a≠-b”的必要不充分條件.故選:B.【點評】平面向量在北京高考數學中占據著重要的必考地位,常以客觀題的形式呈現(xiàn)。其考察熱點主要集中在平面向量的線性運算及數量積的靈活運用上。這些題目既可以設置成基礎題型,幫助學生扎實掌握基礎知識點;又可以構造得相當復雜,通過融合平面幾何、不等式、三角函數等多個知識領域,對學生的綜合應用能力和解題策略提出更高層次的要求。特別是在較難的題目中,平面向量常與其他數學概念相交融,形成綜合考察,考驗著學生的邏輯思維深度和解題智慧。【知識鏈接】1.對于平面向量數量積的求解,有兩種主要方法。當已知向量的模長和夾角時,可以利用公則a-b=xix2+yiy?.2.在處理與平面幾何相關的平面向量數量積的最值與范圍問題時,常用的方法有以下兩種。一是通過建立坐標系,將幾何問題轉化為代數問題,再利用函數思想或基本不等式進行求解;二是通過引入角作為變量,將問題轉化為求解三角函數的最值或范圍問題。這兩種方法都能夠有效地處理這類問題,并幫助我們找到數量積的最值或范圍。A.1B.2【命題意圖】本題考查三角函數最值以及周期性,考查數學運算及邏輯推理的核心素養(yǎng)。難度:中【答案】B【解析】由題意可知:x,為f(x)的最小值點,x?為f(x)的最大值點,【點評】學生們在解決涉及三角函數最值分析的問題時,可以利用周期性的概念進行深入理解,并結合三角函數最小正周期公式進行計算求解。相較于去年,今年的題目難度雖略有提升,但整體上依然較為友好,易于學生理解和把握,因此學生們在掌握相應知識點的基礎上,較容易獲得理想的分數?!局R鏈接】1.對于函數y=Asin(ox+φ)(A≠0,w≠0),其對稱軸一定經過圖象的最高點或最低點,對稱中心的橫坐標一定是函數的零點.2.w由周期得到:①函數圖象在其對稱軸處取得最大值或最小值,且相鄰的兩條對稱軸之間的距離為函數的半個周期;②函數圖象與x軸的交點是其對稱中心,相鄰兩個對稱中心間的距離也是函數的半個周期;③一條對稱軸與其相鄰的一個對稱中心間的距離為函數白個周期(借助圖象很好理解記憶).7.生物豐富度指數是河流水質的一個評價指標,其中S,N分別表示河流中的生物種類數與生物個體總數.生物豐富度指數d越大,水質越好.如果某河流治理前后的生物種類數S沒有變化,生物個體總數由N?變?yōu)镹?,生物豐富度指數由2.1提高到3.15,則()A.3N?=2N?B.2N?=3C.N2=N3【命題意圖】本題考查對數的運算,考查數學運算及邏輯推理的核心素養(yǎng)。難度:中【答案】D【點評】通過將題目背景設置為現(xiàn)實生活情境,我們旨在讓考生在解題的同時,深刻體會到數學既源于生活又服務于生活。本題特別強調了比較兩個數的大小時,除了常見的作差法外,有時采用作比法可能更為恰當和有效。這樣的設計旨在引導考生拓展思維,理解數學在實際問題中的靈活應用。該棱錐的高為().A.1B.2則PE⊥AB,EF⊥AB,且PE∩EF=E,PE,EFC平面PEF,可知AB⊥平面PEF,且ABc平面ABCD,過P作EF的垂線,垂足為0,即PO⊥EF,平面PEF,所以PO⊥平面ABCD,則PE2+PF2=EF2,即PE⊥PF,則【點評】與去年相比,去年考察的是空間幾何體的棱長之和,而今年的焦點則轉向了空間幾何體的高,從難度上看,今年的考查點顯得更為直接和簡單。解題過程中,首先利用面面垂直的性質推導出線面垂直,進而借助等體積法巧妙求解,使得整個解題過程變得清晰且易于操作?!局R鏈接】面面垂直的性質定理文字語言直線與另一個平面垂直圖形語言a符號語言9.已知(x,y?),(x?,y?)是函數y=2*圖象上不同的兩點,則下列正確的是()【答案】A對于選項AB:可得對于選項C:例如x?=0,x?=1,則y?=1,y?=2,對于選項D:例如x?=-1,x?=則可得),即,故D錯誤,【點評】這道題目巧妙地運用了對數函數與指數函數模型,深入考察了基本不等式的應用。在北京高考中,基本不等式經常與其他數學知識點相互交融,而今年這一結合的方式顯得尤為巧妙。題目不僅體現(xiàn)了數學公式的深度,還與函數的凹凸性有著微妙的關聯(lián),為考生提供了一次綜合運用數學知識的機會?!局R鏈接】(1)指數函數的圖像及性質指數函數y=a*(a>0,且a≠1)圖象0x0x定義域R性質過定點過定點(0,1),即x=0時,y=1函數值的變化當x>0時,0<y<1;當x<0時,y>1當x>0時,y>1;當x<0時,0<y<1y=a*與的圖象關于y軸對稱(2)基本不等式:應用基本不等式解題一定要注意應用的前提:“一正”“二定”“三相等”.所謂“一正”是指正數,“二定”是指應用基本不等式求最值時,和或積為定值,“三相等”是指滿足等號成立的條件.10.已知M={(x,y)ly=x+t(x2-x),1≤x≤2,0≤t≤1}是平面直角坐標系中的點集.設d是M中兩點間距離的最大值,S是M表示的圖形的面積,則()A.d=3,S<1B.【命題意圖】本題考查集合的表示、函數圖像的運用,考查數形結合、邏輯推理及數學運算的核心素養(yǎng)。難度:難【答案】C【解析】對任意給定x∈[1,2],則x2-x=x(x-1)≥0,且t∈[0,1],可知x≤x+t(x2-x)≤x+x2-x=x2,即x≤y≤x2,再結合x的任意性,所以所求集合表示的圖形即為平面區(qū)域如圖陰影部分所示,其中A(1,1),B(2,2),C(2,4),可知任意兩點間距離最大值d=|AC=√10;陰影部分面積.【點評】這道題目的設計極為巧妙,它巧妙地利用集合中的點集來代表平面圖形,進而引導學生結合圖像深入分析平面中兩點的最值問題。作為選擇題的壓軸題,它不僅展示了數學的深度和美感,而且相較于去年,難度上有所降低,使得更多學生能夠挑戰(zhàn)并享受解題的過程?!局R鏈接】在運用數形結合的方法時,其核心在于“以形助數”,即在解題過程中,我們應著重培養(yǎng)這種思想意識。這不僅要求我們在腦海中形成清晰的圖形形象,而且要做到每當看到數學表達式時,能夠迅速聯(lián)想到相關的圖形。這樣做能夠極大地拓寬我們的解題思路。使用數形結合法的前提是題目中的條件能夠明確轉化為幾何意義,解題時,我們需精準地把握條件、結論與幾何圖形之間的對應關系,巧妙地利用幾何圖形中的相關定理和結論來求解問題。二、填空題:本題共5小題,每小題5分,共25分.11.已知拋物線y2=16x,則焦點坐標為【命題意圖】本題考查拋物線的基本性質,考查數學運算的核心素養(yǎng)。難度:易【答案】(4,0)【解析】由題意拋物線的標準方程為y2=16x,所以其焦點坐標為(4,0).故答案為:(4,0).【點評】本題重在基礎知識的考查,對學生要求不高?!局R鏈接】標準方程范圍頂點對稱軸x軸y軸焦點準線方程離心率e=1,P越大,拋物線的開口越大焦半徑公式12.在平面直角坐標系xOy中,角α與角β均以Ox為始邊,它們的終邊關于原點對稱.若易【答案】【解析】由題意β=α+π+2kπ,k∈Z,從而cosβ=cos(α+π+2kπ)=-cosα,【點評】通過巧妙地利用三角函數的對稱性特性,我們可以建立β與α之間的關系,進而依托的cosa取值范圍,精準地推導出本題的答案。這種解題方法不僅體現(xiàn)了對基礎知識點的深入理解和應用,更展現(xiàn)了13.若直線y=k(x-3)與雙曲線只有一個公共點,則k的一個取值為【命題意圖】本題考查雙曲線的基本性質及直線與雙曲線的位置關系,考查數學運算及數形結合的核心素【答案】(或,答案不唯一)由題意得1-4k2=0或△=(24k2)2+4(36k2+4)(1-4k2)=0,解得或無解,即,經檢驗,符合題意.故答案為:(或,答案不唯一).【點評】本題為開放型題目,較去年的13題相比容易很多,直接借助直線與雙曲線的位置關系聯(lián)立方程組,令△=0從而求出k。【知識鏈接】設直線l:y=kx+m(m≠0),①當b2-a2k2=0,即寸,直線l與雙曲線C的漸近平行,直線與雙曲線相交于一點.14.漢代劉歆設計的“銅嘉量”是禽、合、升、斗、斛五量合一的標準量器,其中升量器、斗量器、斛量器的形狀均可視為圓柱.若升、斗、斛量器的容積成公比為10的等比數列,底面直徑依次為65mm,325mm,325mm,且斛量器的高為230mm,則斗量器的高為mm,升量器的高為【命題意圖】本題考查等比數列的通項公式及圓柱的體積,考查數學運算的核心素養(yǎng)。難度:中【答案】【解析】設升量器的高為h,斗量器的高為h?(單位都是mm),則【點評】【知識鏈接】(1)圓柱體積V=πr2h(r為底面半徑,h為圓柱的高);(2)等比數列的概念:一般地,如果一個數列從第2項起,每一項與它的前一項的比都等于同一個常數,那么這個數列叫做等比數列,這個常數叫做等比數列的公比,公比通常用字母9表示(q≠0)符號語言(或者15.設{a}與{b.}是兩個不同的無④若{a,}為遞增數列,{b.}為遞減數列,則M中最多有1個元對于③,設b?=Aq"(Aq≠0,q≠±1),a=kn+b(k≠0),當Aq"=kn+b有奇數解,此方程即為-A|q|"=故Aq"=kn+b不可能有4個不同的正數解,故③正確.對于④,因為{a,}為單調遞增,{bn}為遞減數列,前者散點圖呈上升趨勢,后者的散點圖呈下降趨勢,兩者至多一個交點,故④正確.【點評】對于等差數列和等比數列的性質的討論,關系時,等比數列的公比可能為負,此時要注意合理轉化.三、解答題共6小題,共85分.解答應寫出文字說明,演算步驟或證明過程.16.在ABC中,內角A,B,C的對邊分別為a,b,c,∠A為鈍角,a=7,(2)從條件①、條件②、條件③這三個條件中選擇一個作為已知,使得ABC存在,求ABC的面積.條件①:b=7;條件②:;條件③:注:如果選擇的條件不符合要求,第(2)問得0分;如果選擇多個符合要求的條件分別解答,按第一個解答計分.【答案】(1)(2)選擇①無解;選擇②和③△ABC面積均【分析】(1)利用正弦定理即可求出答案;(2)選擇①,利用正弦定理得,結合(1)問答案即可排除;選擇②,首先求出代入式子得b=3,再利用兩角和的正弦公式即可求出sinC,最后利用三角形面積公式即可;選擇③,首先得到c=5,再利用正弦定理得到再利用兩角和的正弦公式即可求出sinB,最后利用三【解析】(1)由題意得,因為A為鈍角,因為A為鈍角,則(2)選擇①b=7,則:,因為,則B為銳角,則此時A+B=π,不合題意,舍棄;選擇②,因為B為三角形內角,則則代入則代入選擇③,解得c=5,因為C為三角形內角,則則算能力過關,該題得滿分應該沒有問題.【知識鏈接】應用正弦、余弦定理的解題技巧或其他相應變形公式求解.(3)已知兩邊和夾角或已知三邊可利用余弦定理求解.17.如圖,在四棱錐P-ABCD中,BC//AD,AB=BC=1,AD=3,點E在AD上,且PE⊥AD,PE=DE=2.(1)若F為線段PE中點,求證:BF//(2)若AB⊥平面PAD,求平面PAB與平面PCD夾角的余弦值.【命題意圖】本題考查線面平行的證明及面面所成角的計算,考查直觀想象、邏輯推理及數學運算的核心素【答案】(1)證明見解析(2)【分析】(1)取PD的中點為S,接SF,SC,可證四邊形SFBC為平行四邊形,由線面平行的判定定理可得BF//平面PCD.(2)建立如圖所示的空間直角坐標系,求出平面APB和平面PCD的法向量后可求夾角的余弦值.【解析】而ED//BC,ED=2BC,故SF//BC,SF=BC,故四邊形SFBC為平行四邊形,故BF//SC,而BF女平面PCD,SCc平面PCD,所以BF//平面PCD.因為ED=2,故AE=1,故AE//BC,AE=BC,故四邊形AECB為平行四邊形,故CE/IAB,所以CE⊥平面PAD,而PE,EDC平面PAD,故CE⊥PE,CE⊥ED,而PE⊥ED,故建立如圖所示的空間直角坐標系,則A(0,-1,0),B(1,-1,0),C(1,0,0),D(0則PA=(0,-1,-2),PB=(1,-1,-2),PC=(1,0,-2),PD=(0,2,-2),設平面PAB的法向量為m=(x,y,z),則由可得,取m=(0,-2,1),設平面PCD的法向量為n=(a,b,c),則由可得,取n=(2,1,1),故平面PAB與平面PCD夾角的余弦值為【點評】北京高考試卷中立體幾何解答題一般有2問,第一問多為線面位置關系的證明,對于線面位置關系的證明,步驟不規(guī)范是失分的主要原因,第二問多為利用空間向量線面角或面面角,在高考中立體幾何解答題【知識鏈接】證明線面位置關系應注意的問題(1)線面平行、垂直關系的證明問題的指導思想是線線、線面、面面關系的相互轉化,交替使用平行、垂直的判定定理和性質定理;(2)線線關系是線面關系、面面關系的基礎.證明過程中要注意利用平面幾何中的結論,如證明平行時常用的中位線、平行線分線段成比例;證明垂直時常用的等腰三角形的中線等;(3)證明過程一定要嚴謹,使用定理時要對照條件、步驟書寫要規(guī)范.18.某保險公司為了了解該公司某種保險產品的索賠情況,從合同險期限屆滿的保單中隨機抽取1000份,記錄并整理這些保單的索賠情況,獲得數據如下表:01234假設:一份保單的保費為0.4萬元;前3次索賠時,保險公司每次賠償0.8萬元;第四次索賠時,保險公司賠償0.6萬元.假設不同保單的索賠次數相互獨立.用頻率估計概率.(1)估計一份保單索賠次數不少于2的概率;(2)一份保單的毛利潤定義為這份保單的保費與賠償總金額之差.(ii)如果無索賠的保單的保費減少4%,有索賠的保單的保費增加20%,試比較這種情況下一份保單毛利潤的數學期望估計值與(i)中E(X)估計【命題意圖】本題考查古典概型求概率、離散型隨機變量的分布列及數學期望,考查數學運算的核心素養(yǎng)。難度:中【答案】(1)(2)(i)0.122萬元(ii)0.1252萬元【分析】(1)根據題設中的數據可求賠償次數不少2的概率;(2)(i)設ξ為賠付金額,則ξ可取0,0.8,0.1.6,2.4,3,用頻率估計概率后可求ξ的分布列及數學期望,從而可求E(X).(ii)先算出下一期保費的變化情況,結合(1)的結果可求E(Y).【解析】(1)設A為“隨機抽取一單,賠償不少于2次”,由題設中的統(tǒng)計數據可得(2)(i)設ξ為賠付金額,則ξ可取0,0.8,1.6,2.4,3,由題設中的統(tǒng)計數據可得(ii)由題設保費的變化為【點評】此題巧妙地以保險單為現(xiàn)實背景,深入生活,探尋數學的蹤跡,將數學與日常生活緊密相連。通過這一方式,不僅檢驗了學生的數學知識,更讓他們深切地認識到數學源于生活、服務于生活的真諦。與去年相比,本題難度適中,讓學生更容易上手,同時也保持了挑戰(zhàn)性,提升了學習的趣味性和實用性?!局R鏈接】一般地,若離散型隨機變量X可能取的不同值為x?,x?,…,x,,…,x,X取每一個值x;(i=1,2,…,n)的概率P(X=x,)=p?,以表格的形式表示如下:XP我們將上表稱為離散型隨機變量X的概率分布列,簡稱為X的分布列.有時(1)求橢圓E的方程及離心率;(2)若直線BD的斜率為0,求t的值.【答案】(1)(2)t=2【分析】(1)由題意得b=c=√2,進一步得a,由此即可得解;定理有,而1,令x=0,即可得解.【解析】(1)由題意,從而a=√b2+c2=2,由題意△=16k2t2-8(2k2+1)(t2-2)=8(4k2+2-r2)>0,即k,t應滿足4k2+2-r2>0,所以若直線BD斜率為0,由橢圓的對稱性可設D(-x?,y?),,在直線AD方程中令x=0,所以t=2,此時k應滿足,即k應滿足或【點評】與去年情況相類似,今年橢圓解答題再次位于第19題,其難度水平也與去年相近。一般而言,解析幾何解答題的第(1)小題被視為較易得分的部分,其難度相對較低。對于考生而言,盡管難題可能難以完全攻克,但爭取在容易題目上拿到盡可能多的分數,始終是值得追求的目標。值得注意的是,解析幾何解答題的一大特點是其計算量相對較大,這導致部分學生在解題過程中可能因為計算能力不足而出錯,甚至因覺得麻煩而選擇放棄。然而,實際上,解析幾何解答題的第(1)小題通常涉及求圓錐曲線方程或離心率,其難度并不高,因此建議考生不要輕易放棄。對于第(2)小題,雖然其解題思路可能需要一定的思考和推導,但總體來說還是較為容易理解和掌握的。建議考生平時多加練習類似的題目,總結計算規(guī)律,以提高解題速度和準確性,確保在這部分能夠取得理想的分數?!局R鏈接】判斷直線l與圓錐曲線C的位置關系時,通常將直線I的方程Ax+By0)代入圓錐曲線C的方程F(x,y)=0,消去y(或x)得到一個關于變量x(或y)的一元方程.例:由消去y,得ax2+bx+c=0.當a≠0時,設一元二次方程ax2+bx+c=0的判別式為4,則:4>0?直線與圓錐曲線C相交;4=0?直線與圓錐曲線C相切;4<0?直線與圓錐曲線C相離.20.設函數f(x)=x+kn(1+x)(k≠0),直線1是曲線y=f(x)在點(t,f(t))(t>0)處的切線.(2)求證:1不經過點(0,0).(3)當k=1時,設點A(t,f(t)(t>0),c(0,f(t)),0(個?(參考數據:1.09<In3<1.10,1.60<In5<1.61,1.94<ln7<1.95)【命題意圖】本題考查導數的幾何意義及導數的綜合運用,考查數學運算及邏輯推理的核心素養(yǎng)。難度:難【答案】(1)單調遞減區(qū)間為(-1,0),單調遞增區(qū)間為(0,+0).(2)證明見解析(3)2【分析】(1)直接代入k=-1,再利用導數研究其單調性即可;,將(0,0)代入再設新函數(2)寫出切線方程,將(0,0)代入再設新函數利用導數研究其零點即可;再設新函數(3)分別寫出面積表達式,代入2SAco=15SAgo得到再設新函數研究其零點即可.∴f(x)在(-1,0)上單調遞減,在(0,+)上單調遞增.則f(x)的單調遞減區(qū)間為(-1,0),單調遞增區(qū)間為(0,+0).則切線方程為則,則,假設l過(0,0),則F(t)在t∈(0,+0)存在零點.,設l與Y軸交點B為(0,q),由(2)知q≠0.所以q>0,【點評】在北京的高考數學考試中,導數解答題常出現(xiàn)在第19題或第20題的位置,這些題目通常以切線為核心展開,無論是探究極值、最值,還是研究零點問題、證明不等式,甚至解決多數情況都需要利用導數來分析函數的單調性,進而利用這一單調性來求解。因此【知識鏈接】曲線的切線問題(在型)第二步:計算切線斜率k=f'(x).第三步:計算切線方程.切線過切點(x,f(x?),切線斜率k=f'(x。)。21.已知集合M={(i,j,k,w)i∈{1,2},j∈{3,4},k∈{5,6},w∈{7,8},且i+j+k+w為偶數}.給定數下變換:將A的第i,ji,k?,w?項均加1,其余項不變,得到的數列記作T(A);將T(A)的第i?,j?,k?,W?項均加1,其余項不變,得到數列記作TT(A);.……;以此類推,得到T,…T?T(A),簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論