楚雄師范學(xué)院《智慧建造與物聯(lián)網(wǎng)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
楚雄師范學(xué)院《智慧建造與物聯(lián)網(wǎng)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
楚雄師范學(xué)院《智慧建造與物聯(lián)網(wǎng)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
楚雄師范學(xué)院《智慧建造與物聯(lián)網(wǎng)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
楚雄師范學(xué)院《智慧建造與物聯(lián)網(wǎng)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)楚雄師范學(xué)院《智慧建造與物聯(lián)網(wǎng)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的發(fā)展中,算力的需求不斷增長(zhǎng)。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,正確的是:()A.普通的個(gè)人電腦就能夠滿足訓(xùn)練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進(jìn),軟件優(yōu)化的作用不大C.云計(jì)算平臺(tái)可以提供強(qiáng)大的算力支持,幫助研究人員和企業(yè)訓(xùn)練復(fù)雜的人工智能模型D.算力的增長(zhǎng)對(duì)人工智能模型的性能提升沒(méi)有實(shí)質(zhì)性的幫助2、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對(duì)模型的性能有著重要影響。假設(shè)我們要訓(xùn)練一個(gè)用于預(yù)測(cè)股票價(jià)格的模型,以下關(guān)于數(shù)據(jù)的說(shuō)法,哪一項(xiàng)是正確的?()A.越多的數(shù)據(jù)一定能帶來(lái)越好的模型性能B.數(shù)據(jù)中的噪聲和錯(cuò)誤對(duì)模型影響不大C.數(shù)據(jù)的分布和代表性比數(shù)量更重要D.不需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和清洗3、人工智能在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)要開(kāi)發(fā)一個(gè)能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要整合患者的病歷、檢查報(bào)告和影像資料等信息。以下關(guān)于數(shù)據(jù)隱私和安全的考慮,哪一項(xiàng)是最為重要的?()A.采用加密技術(shù)對(duì)患者數(shù)據(jù)進(jìn)行加密存儲(chǔ)和傳輸,確保數(shù)據(jù)不被泄露B.允許醫(yī)療數(shù)據(jù)在未經(jīng)患者同意的情況下用于研究和開(kāi)發(fā)新的診斷模型C.忽略數(shù)據(jù)隱私和安全問(wèn)題,優(yōu)先考慮系統(tǒng)的診斷準(zhǔn)確性D.將患者數(shù)據(jù)存儲(chǔ)在公共云服務(wù)上,以降低存儲(chǔ)成本4、人工智能中的機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)等。假設(shè)要對(duì)一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過(guò)擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無(wú)監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動(dòng)將數(shù)據(jù)分為不同的簇C.強(qiáng)化學(xué)習(xí)中的Q-Learning算法,通過(guò)與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對(duì)未標(biāo)記數(shù)據(jù)進(jìn)行分類5、深度學(xué)習(xí)模型在圖像識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域取得了巨大的成功,但也面臨著過(guò)擬合、計(jì)算資源需求大等挑戰(zhàn)。假設(shè)要訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來(lái)識(shí)別各種動(dòng)物的圖像,然而數(shù)據(jù)量有限,為了避免過(guò)擬合同時(shí)提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓(xùn)練輪數(shù)C.使用數(shù)據(jù)增強(qiáng)技術(shù)D.降低學(xué)習(xí)率6、隨著人工智能技術(shù)的發(fā)展,倫理和社會(huì)問(wèn)題也日益受到關(guān)注。假設(shè)一個(gè)人工智能系統(tǒng)在招聘過(guò)程中根據(jù)候選人的數(shù)據(jù)分析做出決策,可能會(huì)導(dǎo)致潛在的歧視和不公平。為了避免這種情況,以下哪種措施最為關(guān)鍵?()A.對(duì)數(shù)據(jù)進(jìn)行匿名化處理B.建立透明的算法和決策機(jī)制C.限制人工智能在招聘中的應(yīng)用D.不使用敏感數(shù)據(jù)進(jìn)行分析7、在人工智能的發(fā)展過(guò)程中,算力的提升起到了重要的推動(dòng)作用。假設(shè)一個(gè)研究團(tuán)隊(duì)需要進(jìn)行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對(duì)人工智能的影響的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的算力能夠加速模型的訓(xùn)練過(guò)程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進(jìn)D.算力的成本和可獲取性會(huì)影響人工智能技術(shù)的應(yīng)用和推廣8、人工智能中的智能客服可以回答用戶的各種問(wèn)題。假設(shè)我們要評(píng)估一個(gè)智能客服的性能,以下關(guān)于評(píng)估指標(biāo)的說(shuō)法,哪一項(xiàng)是不正確的?()A.回答的準(zhǔn)確性B.響應(yīng)的速度C.語(yǔ)言的優(yōu)美程度D.能夠解決問(wèn)題的復(fù)雜程度9、在人工智能的模型評(píng)估中,除了準(zhǔn)確率和召回率等常見(jiàn)指標(biāo),以下哪種指標(biāo)對(duì)于衡量模型的性能也很重要?()A.F1值,綜合考慮準(zhǔn)確率和召回率B.均方誤差,用于回歸問(wèn)題C.混淆矩陣,詳細(xì)展示分類結(jié)果D.以上都是10、人工智能中的模型壓縮技術(shù)可以減少模型的參數(shù)數(shù)量和計(jì)算量。假設(shè)要在移動(dòng)設(shè)備上部署一個(gè)深度學(xué)習(xí)模型,以下哪種模型壓縮方法可能最有效?()A.剪枝B.量化C.知識(shí)蒸餾D.以上都有可能11、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的計(jì)算資源,如GPU集群,可以加速模型的訓(xùn)練過(guò)程B.云計(jì)算平臺(tái)可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無(wú)關(guān)D.合理分配和利用算力資源對(duì)于提高訓(xùn)練效率和降低成本至關(guān)重要12、在自然語(yǔ)言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時(shí),以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過(guò)查找預(yù)定義的情感詞來(lái)判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動(dòng)學(xué)習(xí)語(yǔ)言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動(dòng)化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)13、在人工智能的研究中,模型的可解釋性是一個(gè)重要的問(wèn)題。假設(shè)開(kāi)發(fā)了一個(gè)用于預(yù)測(cè)股票價(jià)格的人工智能模型,但用戶對(duì)模型的決策過(guò)程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預(yù)測(cè)的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量14、在人工智能的圖像增強(qiáng)技術(shù)中,目的是提高圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的照片進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)的方法,哪一項(xiàng)是不準(zhǔn)確的?()A.直方圖均衡化B.銳化濾波C.中值濾波D.圖像增強(qiáng)不會(huì)引入任何噪聲15、在人工智能的圖像識(shí)別任務(wù)中,需要對(duì)大量的圖像進(jìn)行分類,例如區(qū)分貓、狗、鳥(niǎo)等不同的動(dòng)物類別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識(shí)別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度16、人工智能中的強(qiáng)化學(xué)習(xí)算法在機(jī)器人足球比賽中可以訓(xùn)練機(jī)器人球員的策略。假設(shè)要讓機(jī)器人球隊(duì)在比賽中取得更好的成績(jī),以下哪個(gè)方面是強(qiáng)化學(xué)習(xí)算法需要重點(diǎn)優(yōu)化的?()A.球員的動(dòng)作控制B.團(tuán)隊(duì)的協(xié)作策略C.球場(chǎng)環(huán)境的建模D.對(duì)手行為的預(yù)測(cè)17、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來(lái),以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡(jiǎn)單快速,但對(duì)復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過(guò)度分割C.基于邊緣檢測(cè)的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對(duì)噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果18、在人工智能的發(fā)展中,可解釋性是一個(gè)重要的研究方向。假設(shè)一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測(cè)結(jié)果準(zhǔn)確就行B.可解釋性只對(duì)研究人員有意義,對(duì)于實(shí)際應(yīng)用中的用戶不重要C.通過(guò)特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對(duì)模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無(wú)法解釋的黑盒部分19、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動(dòng)作。假設(shè)一個(gè)智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項(xiàng)是錯(cuò)誤的?()A.智能代理可以通過(guò)學(xué)習(xí)和經(jīng)驗(yàn)積累來(lái)改進(jìn)自己的策略B.它能夠根據(jù)環(huán)境的變化實(shí)時(shí)調(diào)整自己的行為,以達(dá)到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無(wú)法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個(gè)智能代理之間可以通過(guò)協(xié)作或競(jìng)爭(zhēng)來(lái)實(shí)現(xiàn)更復(fù)雜的任務(wù)20、在人工智能的發(fā)展中,硬件的支持對(duì)于提高計(jì)算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個(gè)大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢(shì)?()A.CPUB.GPUC.TPUD.FPGA二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述準(zhǔn)確率、召回率和F1值的計(jì)算和應(yīng)用。2、(本題5分)說(shuō)明人類智能的特點(diǎn)和優(yōu)勢(shì)。3、(本題5分)簡(jiǎn)述人工智能在體育分析中的作用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)利用人工智能進(jìn)行戲曲臉譜設(shè)計(jì)的案例,分析其設(shè)計(jì)風(fēng)格和文化內(nèi)涵。2、(本題5分)研究一個(gè)利用人工智能進(jìn)行攝影作品后期處理的案例,分析其處理效果和風(fēng)格特點(diǎn)。3、(本題5分)研究一個(gè)利用人工智能進(jìn)行能源管理的實(shí)例,包括能源消耗預(yù)測(cè)和節(jié)能方案。4、(本題5分)研究一個(gè)使用人工智能的智能保險(xiǎn)理賠評(píng)估系統(tǒng),分析其如何判斷理賠合理性和提高處理效率。5、(本題5分)以某智能皮影戲表演優(yōu)化系統(tǒng)為例,探討人工智能在動(dòng)作流暢性和劇情吸引力

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論