




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025年吉林省延邊朝鮮族自治州汪清縣第六中學高三教學質量檢測試題(一)數(shù)學試題理試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)的圖象向右平移個周期后,所得圖象關于軸對稱,則的最小正值是()A. B. C. D.2.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數(shù)之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列的概率為()A. B. C. D.3.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.4.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.5.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.36.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.107.已知復數(shù)(為虛數(shù)單位,),則在復平面內(nèi)對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種9.已知函數(shù),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.10.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.11.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.12.某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務A必須排在前三項執(zhí)行,且執(zhí)行任務A之后需立即執(zhí)行任務E,任務B、任務C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種二、填空題:本題共4小題,每小題5分,共20分。13.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員、面向全社會的優(yōu)質平臺,現(xiàn)已日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門app.該款軟件主要設有“閱讀文章”和“視聽學習”兩個學習板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰(zhàn)答題”四個答題板塊.某人在學習過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學習”兩大學習板塊之間最多間隔一個答題板塊的學習方法有________種.14.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)15.若關于的不等式在上恒成立,則的最大值為__________.16.的展開式中,的系數(shù)為_______(用數(shù)字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若函數(shù)在上單調遞減,且函數(shù)在上單調遞增,求實數(shù)的值;(2)求證:(,且).18.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.19.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.20.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.21.(12分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調區(qū)間.22.(10分)設函數(shù).(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導公式得到關于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關于軸對稱,所以,即,所以當時,有最小正值為.故選:D本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導公式及正余弦函數(shù)的性質;熟練掌握誘導公式和正余弦函數(shù)的性質是求解本題的關鍵;屬于中檔題、常考題型.2.C【解析】
先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構成等差數(shù)列的情況有:,共種,所以目標事件的概率.故選:C.本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.3.B【解析】
設過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.4.C【解析】
根據(jù)可得四邊形為矩形,設,,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.5.C【解析】
結合不等式、三角函數(shù)的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數(shù)的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C本題考查了命題真假的判斷,考查了余弦函數(shù)單調性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.6.C【解析】
根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質,屬難題.7.B【解析】
分別比較復數(shù)的實部、虛部與0的大小關系,可判斷出在復平面內(nèi)對應的點所在的象限.【詳解】因為時,所以,,所以復數(shù)在復平面內(nèi)對應的點位于第二象限.故選:B.本題考查復數(shù)的幾何意義,考查學生的計算求解能力,屬于基礎題.8.C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.9.C【解析】
將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,因為函數(shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.10.D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).11.C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結構求出其體積.12.B【解析】
分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有;如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執(zhí)行方案共有種.本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先分間隔一個與不間隔分類計數(shù),再根據(jù)捆綁法求排列數(shù),最后求和得結果.【詳解】若“閱讀文章”與“視聽學習”兩大學習板塊相鄰,則學習方法有種;若“閱讀文章”與“視聽學習”兩大學習板塊之間間隔一個答題板塊的學習方法有種;因此共有種.故答案為:本題考查排列組合實際問題,考查基本分析求解能力,屬基礎題.14.【解析】
根據(jù)題意,設,則,所以,解得,所以,從而有.15.【解析】
分類討論,時不合題意;時求導,求出函數(shù)的單調區(qū)間,得到在上的最小值,利用不等式恒成立轉化為函數(shù)最小值,化簡得,構造放縮函數(shù)對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調遞減.因為,且在區(qū)間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.16.60【解析】
根據(jù)二項式定理展開式通項,即可求得的系數(shù).【詳解】因為,所以,則所求項的系數(shù)為.故答案為:60本題考查了二項展開式通項公式的應用,指定項系數(shù)的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)見解析【解析】
(1)分別求得與的導函數(shù),由導函數(shù)與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數(shù)運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當時,,當時,.∴∴即,∴.本題考查了導數(shù)與函數(shù)單調性關系,放縮法在證明不等式中的應用,屬于難題.18.(1)見解析;(2)見解析【解析】
(1)根據(jù),分別是,的中點,即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點,證出,再根據(jù)平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.本題考查直線與平面平行的判定,面面垂直的性質等,解題時要認真審題,注意空間思維能力的培養(yǎng),中檔題.19.(1)(2)(i)(ii)分布列見解析,【解析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數(shù)學期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數(shù)學運算的能力,屬于中檔題.20.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(shù)(2)設根據(jù)余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國健姿帶市場調查研究報告
- 2025年中國二屜柜市場調查研究報告
- 營改增下合同簽訂注意事項模板
- 經(jīng)營合同范本之經(jīng)營合同之承包合同書農(nóng)副業(yè)a模板
- 2025-2030安全座椅行業(yè)兼并重組機會研究及決策咨詢報告
- 2025-2030衛(wèi)生紙產(chǎn)業(yè)園區(qū)定位規(guī)劃及招商策略咨詢報告
- 2025-2030制氧機行業(yè)行業(yè)風險投資發(fā)展分析及投資融資策略研究報告
- 2025-2030全球及中國智能后視鏡行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 2025-2030中國沙發(fā)茶幾組合行業(yè)市場深度調研及發(fā)展?jié)摿εc投資研究報告
- 網(wǎng)絡交易平臺入駐協(xié)議
- 米什金貨幣金融學英文版習題答案chapter1英文習題
- 紅色資本家榮毅仁課件
- 酒店貸款報告
- 會計職業(yè)道德對職業(yè)發(fā)展的影響研究
- 體育賽事推廣方案
- 子宮肌瘤健康教育指導
- 手術室專案改善活動護理課件
- 公交駕駛員心理健康輔導培訓
- 樁基施工安全培訓課件
- 設立文化傳播服務公司組建方案
- 管線補焊施工方案
評論
0/150
提交評論