




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
遼寧省盤錦市重點中學2025屆高三第二次(4月)適應性測試數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知變量,滿足不等式組,則的最小值為()A. B. C. D.2.我國南北朝時的數(shù)學著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤3.已知函數(shù),若函數(shù)的所有零點依次記為,且,則()A. B. C. D.4.定義在上的函數(shù)與其導函數(shù)的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.5.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.6.已知集合,,則A. B. C. D.7.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)8.已知角的終邊與單位圓交于點,則等于()A. B. C. D.9.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.202010.函數(shù)的圖象大致為()A. B.C. D.11.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.12.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.14.設為偶函數(shù),且當時,;當時,.關于函數(shù)的零點,有下列三個命題:①當時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.15.定義在上的奇函數(shù)滿足,并且當時,則___16.某高校組織學生辯論賽,六位評委為選手成績打出分數(shù)的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調(diào)査,統(tǒng)計了他們一周課外讀書時間(單位:)的數(shù)據(jù)如下:一周課外讀書時間/合計頻數(shù)46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時間的中位數(shù).(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數(shù);②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.18.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.19.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.20.(12分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設且.(1)求點的坐標;(2)求的取值范圍.21.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.22.(10分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結(jié)合的方法,屬于基礎題.2.C【解析】設這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C3.C【解析】
令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點是將所求的式子拆分為的形式.4.B【解析】
先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導函數(shù)的圖象,求出函數(shù)的導數(shù)為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點,但其導函數(shù)圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點,則其導函數(shù)圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數(shù)求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導函數(shù)的圖象,考查推理能力,屬于中等題.5.A【解析】
利用數(shù)列的遞推關系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關系式的應用,數(shù)列累加法以及通項公式的求法,考查計算能力.6.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.7.B【解析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數(shù)性質(zhì)的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.8.B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎題.9.C【解析】
首先,根據(jù)二倍角公式和輔助角公式化簡函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識,掌握輔助角公式化簡函數(shù)解析式是解題的關鍵,屬于中檔題.10.A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.11.D【解析】
根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.12.C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數(shù)的最小值為,當時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】
計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【點睛】本題考查三棱錐的外接球的應用,屬于中檔題.14.①②③【解析】
根據(jù)偶函數(shù)的圖象關于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.15.【解析】
根據(jù)所給表達式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對稱軸及周期性,進而由的解析式求得的值.【詳解】滿足,由函數(shù)對稱性可知關于對稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當時,所以,所以,故答案為:.【點睛】本題考查了函數(shù)奇偶性與對稱性的綜合應用,周期函數(shù)的判斷及應用,屬于中檔題.16.【解析】
先根據(jù)莖葉圖求出平均數(shù)和中位數(shù),然后可得結(jié)果.【詳解】剩下的四個數(shù)為83,85,87,95,且這四個數(shù)的平均數(shù),這四個數(shù)的中位數(shù)為,則所剩數(shù)據(jù)的平均數(shù)與中位數(shù)的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側(cè)重考查數(shù)據(jù)分析和數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,,中位數(shù);(2)①三層中抽取的人數(shù)分別為2,5,13;②【解析】
(1)根據(jù)頻率分布直方表的性質(zhì),即可求得,得到,,再結(jié)合中位數(shù)的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據(jù)抽樣比,求得在三層中抽取的人數(shù);②由①知,設內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,利用列舉法得到基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數(shù)為小時,則,解得,即一周課外讀書時間的中位數(shù)約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數(shù)分別為20,50,130,所以從,,三層中抽取的人數(shù)分別為2,5,13.②由①知,在,兩層中共抽取7人,設內(nèi)被抽取的學生分別為,內(nèi)被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質(zhì),中位數(shù)的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.18.(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據(jù),可得曲線C1的極坐標方程,然后先計算曲線C2的普通方程,最后根據(jù)極坐標與直角坐標的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標方程聯(lián)立,可得A,B的極坐標,然后簡單計算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線的極坐標方程為,曲線的普通方程為則曲線的極坐標方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標方程和參數(shù)方程與直角坐標方程的轉(zhuǎn)化,以及極坐標方程中的幾何意義,屬基礎題.19.(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.20.(1);(2).【解析】
(1)設出的坐標,代入,結(jié)合在拋物線上,求得兩點的橫坐標,進而求得點的坐標.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,結(jié)合,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得的取值范圍.【詳解】(1)可知,設則,又,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 華東師范大學《納米材料及其制備技術》2023-2024學年第二學期期末試卷
- 常州工程職業(yè)技術學院《外出寫生》2023-2024學年第一學期期末試卷
- 上海交通大學《社區(qū)護理(含老年護理)》2023-2024學年第二學期期末試卷
- 石家莊醫(yī)學高等??茖W?!队嬎銠C組網(wǎng)技術》2023-2024學年第二學期期末試卷
- 2025四川建筑安全員《B證》考試題庫及答案
- 部編版歷史八年級上冊《2中華民國的創(chuàng)建》模板
- 2025年山東省安全員A證考試題庫及答案
- 釣魚知識集錦與釣魚餌料制作(講義)
- 2025吉林省建筑安全員考試題庫附答案
- 2025河北省建筑安全員《C證》考試題庫及答案
- 關于學生假期(寒暑假)安排的調(diào)查問卷
- 缺血性腦卒中的護理
- 中國歷史-Chinese History (中英文)
- 北京市海淀區(qū)2023-2024學年八年級下學期期末考試英語試題(解析版)
- 重癥醫(yī)學中級考試記憶總結(jié)
- 小學六年級上下冊語文必背古詩詞
- 成語故事對牛彈琴
- 醫(yī)療器械分成協(xié)議
- 物流成本管理第四版段春媚課后參考答案
- 2024北京市大興初二(下)期中數(shù)學試卷及答案
- MOOC 中醫(yī)兒科學-廣州中醫(yī)藥大學 中國大學慕課答案
評論
0/150
提交評論